

Objective Questions

Discovery and Properties of anode, cathode rays neutron and Nuclear structure

 A neutral ator 	m (Atomic no. > 1) consists of
------------------------------------	-------------------	---------------

[CPMT 1982]

- (a) Only protons
- (b) Neutrons + protons
- (c) Neutrons + electrons
- (d) Neutron + proton + electron
- 2. The nucleus of the atom consists of

[CPMT 1973, 74, 78, 83, 84; MADT Bihar 1980;

DPMT 1982, 85; MP PMT 1999]

- (a) Proton and neutron
- (b) Proton and electron
- (c) Neutron and electron
- $(d) \quad \hbox{Proton, neutron and electron}$
- **3.** The size of nucleus is of the order of

[CPMT 1982; MP PMT 1991]

- (a) $10^{-12} m$
- (b) $10^{-8} m$
- (c) $10^{-15} m$
- (d) $10^{-10} m$
- 4. Positive ions are formed from the neutral atom by the

[CPMT 1976]

- (a) Increase of nuclear charge
- (b) Gain of protons
- (c) Loss of electrons
- $(d) \quad Loss \ of \ protons$
- 5. The electron is

[DPMT 1982; MADT Bihar 1980]

- (a) α -ray particle
- (b) β -ray particle
- (c) Hydrogen ion
- (d) Positron
- **6.** Who discovered neutron

[1IT 1982; BITS 1988;CPMT 1977; NCERT 1974;

MP PMT 1992; MP PET 2002]

- (a) James Chadwick
- (b) William Crooks
- (c) J.J. Thomson
- (d) Rutherford
- 7. The ratio of charge and mass would be greater for

[BHU 2005]

- (a) Proton
- (b) Electron
- (c) Neutron
- (d) Alpha

(a) Proton is nucleus of deuterium 8. Magnitude of K.E. in an orbit is equal to [BCECE 2005] (a) Half of the potential energy (b) Proton is ionized by drogen molecule (b) Twice of the potential energy (c) Proton is ionized hydrogen atom (c) One fourth of the potential energy (d) Proton is α -particle (d) None of these [AMU 1983] Cathode rays are made up of The density of neutrons is of the order [NCERT 1980] 9. (a) Positively charged particles (a) $10^3 kg / cc$ (b) $10^6 kg / cc$ (b) Negatively charged particles (c) Neutral particles (c) $10^9 kg / cc$ (d) $10^{11} kg / cc$ (d) None of these The discovery of neutron becomes very late because An ode rays were discovered by [DPMT 1985] [CPMT 1987; AIIMS 1998] (a) Goldstein (b) J. Stoney (a) Neutrons are present in nucleus (c) Rutherford (d) J.J. Thomson (b) Neutrons are highly unstable particles The radius of an atom is of the order of (c) Neutrons are chargeless [AMU 1982; IIT 1985; MP PMT 1995] (d) Neutrons do not move The fundamental particles present in the nucleus of an [CPMT 10^{-10} cm (c) 10^{-15} cm 11. (b) 10^{-13} cm atom are (d) 10^{-8} cm (a) Alpha particles and electrons Neutron possesses [CPMT 1982] (b) Neutrons and protons (a) Positive charge (b) Negative charge (c) Neutrons and electrons (c) No charge (d) All are correct (d) Electrons, neutrons and protons Neutron is a fundamental particle carrying The order of density in nucleus is 12. [NCERT 1981, CPMT 1981, 2003] (a) A charge of +1 unit and a mass of 1 unit (a) $10^8 kg / cc$ (b) $10^{-8} kg / cc$ (b) No charge and a mass of 1 unit (c) $10^{-9} kg / cc$ (d) $10^{12} kg / cc$ (c) No charge and no mass (d) A charg of -1 and a mass of 1 unit Cathode rays are [JIPMER 1991; NCERT 1976] 25. Cathode rays have [CPMT 1982] (a) Protons (b) Electrons (a) Mass only (b) Charge only (c) Neutrons (d) α -particles (c) No mass and charge (d) Mass and charge both Number of neutron in C^{12} is [BCECE 2005] 26. The size of nucleus is measured in (a) 6 (b) 7 [EAMCET 1988; CPMT 1994] (c) 8 (d) 9 (a) amu (b) Angstrom [DPMT 1983; MP PET 1999] Heaviest particle is (c) Fermi (d) cm (a) Meson (b) Neutron Which phrase would be incorrect to use (c) Proton (d) Electron [AMU (Engg.) 1999] Penetration power of proton is (a) A molecular of a compound [BHU 1985; CPMT 1982, 88] (b) A molecule of an element (a) More than electron (b) Less than electron (c) An atom of an element (c) More than neutron (d) None (d) None of these An elementary particle is [CPMT 1973] Which one of the following pairs is not correctly matched [MP PET 2002] (a) An element present in a compound (b) An atom present in an element (a) Rutherford-Proton (c) A sub-atomic particle (b) J.J. Thomsom-Electron (c) J.H. Chadwick-Neutron (d) A fragment of an atom The nucleus of helium contains (d) Bohr-Isotope 18. [CPMT 1972; DPMT 1982] Proton was discovered by [AFMC 2004] (a) Four protons (a) Chadwick (b) Thomson (b) Four neutrons (c) Goldstein (d) Bohr (c) Two neutrons and two protons 30. The minimum real charge on any particle which can exist (d) Four protons and two electrons [RPMT 2000] Which is correct statement about proton 19. [CPMT 1979; MP PMT 1985; NCERT 1985; MP PET 1999] (a) 1.6×10^{-19} Coulomb (b) $1.6 \times 10^{-10} Coulomb$

31.	(c) 4.8×10^{-10} Coulomb The nature of anode ray	(d) Zero		(a) Atomic weight(c) Equivalent weigh	(b) Atomic numbert (d) Electron affinity
31.	The nature of anode ray	1 1		(c) Equivalent weigh	t (d) Electron affinity
•		s depends u pon	_		-
		[MP PET 2004]	2.	atomic weight 55 will	nent having a tomic number 25 and contain
	(a) Nature of electrode	(b) Nature of residual gas		atomie weight jj win	[CPMT 1986; MP PMT 1987]
	(c) Nature of discharge	tube (d) All the above		(a) 25 protons and 30	
32.	One would expect proton			(b) 25 neutrons and 3	30 protons
Ŭ	1 1	[Pb. CET 2004]		(c) 55 protons	
	(a) Ionization potential	(b) Radius		(d) 55 neutrons	137.11
	(c) Charge	(d) Hydration energy	3.	element, then	nd N is the atomic number of an [CPMT 1971, 80, 89]
33.	The mass of a mol of prot	ton and electron is		(a) Number of $e^{-1} = V$	
	(a) $6.023 \times 10^{23} g$	(b) 1.008g and 0.55mg		(a) Number of $e^{-1} = V$ (b) Number of $0 n^1 = V$	
	(c) $9.1 \times 10^{-28} kg$	(d) 2gm		(c) Number of $_1H^1 =$	
34.	nucleus is of the order of	n electron in an atom from its [MP PET 1996]		(d) Number of $_0n^1 = R$	N
		- ,, -	4.		utrons in dipositive zinc ions with
	(a) $10^6 m$	(b) $10^{-6} m$		mass number 70 is	[IIT 1979; Bihar MEE 1997]
	(c) $10^{-10} m$	(d) $10^{-15} m$		(a) 34 (c) 36	(b) 40 (d) 38
35 ·	The mass of 1 mole of electr	ons is [Pb. CET 2004]	5.		are isoelectronic with one another
	(a) $9.1 \times 10^{-28} g$	(b) 1.008 mg	U		[NCERT 1983; EAMCET 1989]
	(c) 0.55 mg	(d) $9.1 \times 10^{-27} g$		(a) Na^+ and Ne	(b) K^+ and O
36.	The ratio of specific charg	e of a proton and an α -particle		(c) Ne and O	(d) Na^+ and K^+
.	is		6.		ons in one molecule of CO_2 are
		[MP PET 1999]			1979; MP PMT 1994; RPMT 1999]
	(a) 2:1	(b) 1:2		(a) 22 (c) 66	(b) 44 (d) 88
	(c) 1:4	(d) 1:1	7.		om chloride ion in the number of
37 •	Ratio of masses of proton	and electron is [BHU 1998]	/ •	entorme atom unicism	[NCERT 1972; MP PMT 1995]
	(a) Infinite	(b) 1.8×10^3		(a) Proton	(b) Neutron
	(c) 1.8	(d) None of these		(c) Electrons	(d) Protons and electrons
38.	Splitting of signals is cause		8.		s as or the ion that is isoelectronic
	(a) Proton	(b) Neutron		with CO is	[CPMT 1984; IIT 1982; EAMCET 1990; CBSE PMT 1997]
	(c) Positron	(d) Electron		(a) N_2^+	(b) <i>CN</i> ⁻
39.	The proton and neutron	are collectively called as		_	
	•	[MP PET 2001]		(c) O_2^+	(d) O_2^-
	(a) Deutron	(b) Positron	9.	The mass of an atom i	s constituted mainly by
	(c) Meson	(d) Nucleon		(a) Noutron and nout	[DPMT 1984, 91; AFMC1990] crino(b) Neutron and electron
40.	Which of the following ha	as the same mass as that of an			on (d) Proton and electron
	electron	[AFMC 2002]	10.	_	f an element represents
	(a) Photon	(b) Neutron			MT 1990; N CERT 1973; AMU 1984]
	(c) Positron	(d) Proton		(a) Number of neutro	
41.	What is the ratio of m ass	of an electron to the mass of a		(b) Number of proton	
	proton			(c) Atomic weight of (d) Valency of element	
		[UPSEAT 2004]	11.	-	ns and its atomic weight is 56. The
	(a) 1:2	(b) 1:1			n the nucleus of the atom will be
	(c) 1:1837	(d) 1:3		() -([CPMT 1980]
Ato	mic number, Mass n	umber, Atomic species		(a) 26 (c) 36	(b) 30 (d) 56
	m 1 6 3 · ·		12.		ius (in pm) for finding the electron
1.	The number of electrons is to its	n an atom of an element is equal [BHU 1979]	- - •	in He^+ is	[AIIMS 2005]
	CO 160	[3110 19/9]		· 	[

	(a) 0.0	(b) 52.9		(b) The number of electrons	f nucleons is double of the	number o
40	(c) 26.5	(d) 105.8			protons is half of the number o	of neutrons
13.	rne number of unpaired	electrons in the Fe^{2+} ion is [MP PET 1989; KCET 2000]		(d) The number of	nucleons is double of the atom	ic number
	(a) o	(b) 4	24.	Pick out the isoeled	ctronic structures from the	efollowing
	(c) 6	(d) 3		$CH_3^+ H_3O^+$	NH_3 CH_3^-	[IIT 1993]
14.		erent number of electrons from				
	(a) O^{2-}	(b) F^{-}		(a) I and II	(b) I and IV	
	(c) <i>Li</i> ⁺	(d) Al^{+3}		(c) I and III	(d) II, III and IV	
15.	An atom which has los		25 .	Number of electron	$as in -CONH_2 is$ [A	MU 1988]
		[CPMT 1986]		(a) 22	(b) 24	
	(a) Negatively charge	d		(c) 20	(d) 28	
	(b) Positively charged		26.	The atomic number	r of an element having the v	alency shell
	(c) Electrically neutra			electronic configura	ation $4s^24p^6$ is [MP]	PMT 1991]
	(d) Carry double posit	_		(a) 35	(b) 36	
16.		he outermost orbit of the element		(c) 37	(d) 38	
	of atomic number 15 is	[CPMT 1988, 93]	2 7.	The present atom	ic weight scale is based on	
	(a) 1 (c) 5	(b) 3 (d) 7			[EA MCET 1988; MP Ι	PMT 2002]
1=	· · ·	in element is double its atomic		(a) C^{12}	(b) O^{16}	
17.		our electrons in $2p$ orbital, the		(c) H^{1}	(d) C^{13}	
	element is	[AMU 1983]	28.	Isoelectronic specie		CET 1989]
	(a) C	(b) N	_0,	(a) K^+, Cl^-	(b) Na^+, Cl^-	021 1909
	(c) O	(d) <i>Ca</i>		(a) K ,Cl		
18.		nic configuration of $1s^2, 2s^2 2p^6$,		(c) <i>Na</i> , <i>Ar</i>	(d) Na^+, Ar	
10.			29.	If the atomic weigh	nt of an element is 23 times	that of the
		atomicweight is 80. Its atomic		lightest element an	d it has 11 protons, then i	
	be	of neutrons in its nucleus shall			[EAMCET 1986; A	FMC 1989]
	be	[MP PMT 1987]			neutrons, 11 electrons	
	(a) 35 and 45	(b) 45 and 35		_	neutrons, 11 electrons	
	(c) 40 and 40	(d) 30 and 50		-	neutrons, 11 electrons	
19.	Which of the following p	articles has more electrons than		•	neutrons, 23 electrons	
	neutrons		30.		ving oxides of nitrogen is iso	
	(a) <i>C</i>	(b) F^-		with CO ₂	_	PMT 1990]
	(c) O^{-2}	(d) Al^{+3}		(a) NO_2	(b) N_2O	
20.		of atomic weight 12 and atomic		(c) <i>NO</i>	(d) $N_2 O_2$	
	_	f atomic weight 13 and atomic	31.	The ratio between t	the neutrons in C and Si w	ith respect
	number 6	[NCERT 1971]	0	to atomic masses		
		rons(b) Contains more electrons cons(d) Is a different element		(a) 2:3	(b) 3:2	
	•			(c) 3:7	(d) 7:3	_
21.	In the nucleus of $_{20}$ Ca		32.	The atomic numb	er of an element is always	-
	(a) 40 protons and 20	[CPMT 1990; EAMCET 1991]		(a) Atomic weigh	_	PMT 1994]
	(b) 20 protons and 40				utrons in the nucleus	
	(c) 20 protons and 20			(c) Weight of the		
	(d) 20 protons and 40			(d) Electrical cha		
22.	Na ⁺ ion is isoelectronic	with [CPMT 1990]	33.		ving is isoelectronic with ca	rbon atom
	(a) <i>Li</i> ⁺	(b) Mg^{+2}			[MP PMT 1994; UPS	EAT 2000]
				(a) Na^+	(b) Al^{3+}	
	(c) Ca^{+2}	(d) Ba^{+2}		(c) O^{2-}	(d) N ⁺	
23.		nd atomic weight 40. Which of the	9.4	CO_2 is isostructu:		
	ionowing statements is	not correct about <i>Ca</i> atom [MP PET 1993]	34.	2 13 1305ti uctu.		06 04 0-
						OD 04 05
	(a) The number of elec	trons is same as the number of		(a) SnCl ₂	[IIT 1986; MP PMT 19 (b) SO ₂	00,94,95

	(c) $HgCl_2$	(d) All the above		m) 1 (1)	. 40 1 .	
			47•	The number of electrons	.,	. AEMCassal
35 ·	The hydride ions (H^{-}) ar			(a) 19	(b) 20	y; AFMC1999]
	[.	A FMC 1995; Bihar MEE 1997]		(c) 18	(d) 40	
	(a) Li	(b) <i>He</i> ⁺	48.	The number of electrons a		element is 18
	(c) <i>He</i>	(d) <i>Be</i>		and 20 respectively. Its		
36.	The number of electrons i				; Pb. PMT 1999 ; N	AP PMT 1999]
		[AFMC 1995]		(a) 17 (c) 2	(b) 37 (d) 38	
	(a) 6	(b) 12	49.	Number of protons, ne		ctrons in the
	(c) 0	(d) 3	• •	element $^{231}_{89}$ Y is		[AFMC 1997]
37 •		configuration 2, 8, 18, 1. If its how many neutrons will be		(a) 89, 231, 89	(b) 89, 89, 24 (d) 89, 71, 89	42
	(a) 30	(b) 32	50.	Be^{2+} is isoelectronic with		
	(c) 34	(d) 33	50.	(a) Mg^{2+}		MCET 1998]
38.	The nucleus of the elemen	F^{45} contains			(b) <i>Na</i> ⁺	
J 0.				(c) <i>Li</i> ⁺	(d) H ⁺	DOD
	(a) 45 protons and 21 ne(b) 21 protons and 24 ne		51.	An isostere is		PSEAT 1999]
	(c) 21 protons and 24 ne			(a) NO_2^- and O_3	(b) NO_2^- and	PO_4^{3-}
	(d) 24 protons and 21 ne			(c) CO_2, N_2O, NO_3^-	(d) ClO_4^- and	OCN -
39.	· -	oms of all elements except in [MP PMT 1997]	52.	Nitrogen atom has an atom an atomic number 8. The	total number of	electrons in a
	(a) Chlorine	(b) Oxygen		nitrate ion will be	(b) 16	. PMT 2000]
	(c) Argon	(d) Hydrogen		(a) 8 (c) 32	(d) 64	
40.		ion, X^{3-} , is 14. If there are ten e number of neutrons in the	53.	If molecular mass and at and 32 respectively, its ato	omic mass of sul micity is	phur are 256 [RPET 2000]
	nacicus or atom, x ₂ or th	[MP PMT 1999]		(a) 2	(b) 8	
	(a) 10	(b) 14	54.	(c) 4 The nitride ion in lithium	(d) 16 m nitride is com	nosed of
	(c) 7	(d) 5	94.	1110 1111111111111111111111111111111111		[KCET 2000]
41.		g are isoelectronic species		(a) 7 protons + 10 electr	rons	
	$I = CH_3^+, II - NH_2, III - NH$	⁺ ₄ , IV – NH ₃ [CPMT 1999]		(b) 10 protons + 10 elec		
	(a) I, II, III	(b) II, III, IV		(c) 7 protons + 7 proton (d) 10 protons + 7 electr		
	(c) I, II, IV	(d) I and II	55.	The atomic number of an		he number of
42.	The charge on the atom neutrons and 18 electrons is	containing 17 protons, 18 [AIIMS 1996]	55.	orbitals containing electr	on pairs in its va	lence shell is [CPMT 2001]
	(a) +1	(b) −2		(a) Eight	(b) Six	
	(c) -1	(d) Zero		(c) Three	(d) Two	
43.	(a) Zero (c) 4	ons in inert gas is[CPMT 1996] (b) 8 (d) 18	56.	The atomic number of an is 81. The number of elect	rons in the outer	
44.	In neutral atom, which p			(a) 7	(b) 6	
		[RPMT 1997]		(c) 5	(d) 3	
	(a) p^+, e^+	(b) e^-, e^+	5 7•	Which of the following is r	otisoelectronic[M	MP PET 2002
	(c) e^-, p^+	(d) p^+, n^o		(a) <i>Na</i> ⁺	(b) Mg^{2+}	
45.	Nucleitend to have more n	eutrons than protons at high		(c) Q^{2-}	(d) <i>Cl</i> ⁻	
		[Roorkee Qualifying 1998]	58.	The charge of an electron	• •	Thevelue
	(a) Neutrons are neutral	-	50.	-		The value of
	(b) Neutrons have more	_		free charge on Li^+ ion w	111 be 'MC 2002; KCET	(Fngg) 2002]
		rize the coulomb repulsion				
	(d) Neutrons decrease th			(a) $3.6 \times 10^{-19} C$	(b) $1 \times 10^{-19} C$	
46.	Which one of the following	is not isoelectronic with O^{2-}		(c) $1.6 \times 10^{-19} C$	(d) 2.6×10^{-19}	
	(a) N^{3-}	[CBSE PMT 1994]	59.	Iso-electronic species is		[RPMT 2002]
		(b) F ⁻		(a) F^- , O^{-2}	(b) F^{-} , O	
	(c) Tl^+	(d) <i>Na</i> ⁺				

	(c) F^-, O^+	(d) F^- , O^{+2}		(b) 4 protons and 7 elec
60.	,	ic weight 40 and it's electronic		(c) 4 protons and 10 ele
00.		$s^2 2p^6 3s^2 3p^6$. Then its atomic		(d) 10 protons and 7 ele
	C	neutrons will be [RPMT 2002]	73.	Number of neutrons in
	(a) 18 and 22	(b) 22 and 18	, -	
	(c) 26 and 20	(d) 40 and 18		(a) o
61.	The nucleus of tritium c			(c) 2
01.		on (b) 1 proton + 3 neutron	74.	Which of the following i
		on (d) 1 proton + 2 neutron	7-4-	
62.	_	lowing groupings represents a		(a) Atomic weight
	collection of isoelectron			(c) Equivalent weight
	(a) Na^+, Ca^{2+}, Mg^{2+}	(b) N^{3-}, F^-, Na^+		
	(c) Be, Al^{3+}, Cl^{-}	(d) $Ca^{2+} Cs^{+} Rr$	A	tomic models and Pla
63.		are isoelectronic and isostructural		D 1 C 1
03.	$NO_3^-, CO_3^{2-}, ClO_3^-, SO_3$	[IIT Screening 2003]	1.	Rutherford's experiment for the first time that th
	3 3 3 3	- 0		[IIT 1981;]
	(a) NO_3^-, CO_3^{2-}	(b) SO_3, NO_3^-		CPMT
	(c) ClO_3^-, CO_3^{2-}	(d) CO_3^{2-} , SO_3		
64.	The number of electrons	s in Cl^- ion is [MP PMT 2003]		(a) Electrons
04.	(a) 19	(b) 20		(c) Nucleus
	(c) 18	(d) 35	2.	Rutherford's scattering ex
65.	The number of neutron			the
Ŭ	(a) 1	(b) 2		[IIT 1983
	(c) 3	(d) o		(a) Nucleus
66.	Tritium is the isotope of	[CPMT 2003]		(c) Electron
	(a) Hydrogen	(b) Oxygen	3.	Rutherford's alpha par
	(c) Carbon	(d) Sulpher		ev entually led to the conc
67.		n element is 35. What is the total		(a) Mass and energy ar
	number of electrons pr ground state atom of t	resent in all the <i>p</i> -orbitals of the		(b) Electrons occupy sp
	ground state atom or t	[EAMCET (Engg.) 2003]		(c) Neutrons are buried
	(a) 6	(b) 11		` ,
	(c) 17	(d) 23		(d) The point of impact determined
68.	The nucleus of an elemer	nt contain 9 protons. Its valency		
	would be		4. [Bohr's model can explain
	(a) 1	(b) 3		(a) The spectrum of hy
69.	(c) 2	(d) 5 cation is isoelectronic with a nion is		(b) Spectrum of atom or
09.	The compound in winch	[UPSEAT 2004]		(c) The spectrum of hy
	(a) <i>NaCl</i>	(b) <i>CsF</i>		(d) The solar spectrum
	(c) NaI	(d) K_2S	5.	When atoms are bombare
70.	Which among the follow	ing species have the same number of	J .	few in million suffer
,		ost as well as penultimate shell		undeflected. This is becau
		[DCE 2004]		(a) The force of repulsion
	(a) Mg^{2+}	(b) O^{2-}		small
				(b) The force of attraction
	(c) F ⁻	(d) Ca^{2+}		oppositely charged
71.	Six protons are found i			(c) There is only one
		MT 1977, 80, 81; NCERT 1975, 78]		electrons
	(a) Boron	(b) Lithium		(d) The nucleus occu
	(c) Carbon	(d) Helium		compared to the vol
7 2 .	-	s 7 protons and 7 electrons, the	6.	Positronium consists of
	nitride ion (N^{3-}) will h	ave [NCERT 1977]	υ.	1 OSITI OHIUHI COHSISTS OF

- etrons
- ectrons
- ectrons
- heavy hydrogen atom is

[MP PMT 1986]

- (d) 3
- is always a whole number
 - [CPMT 1976, 81, 86]
 - (b) Atomic radii

(b) 1

(d) Atomic number

anck's quantum theory

on scattering of particles showed ne atom has

NCERT 1981; CMC Vellore 1991; T 1984; Kurukshetra CEE 1998]

- (b) Protons
- (d) Neutrons
- xperiment is related to the size of

3; MADT Bihar 1995; BHU 1995]

- (b) Atom
- (d) Neutron
- rticle scattering experiment clusion that[IIT 1986; RPMT 2002]
 - e related
 - ace around the nucleus
 - d deep in the nucleus
 - with matter can be precisely
- [IIT 1985]
 - drogen atom only
 - ion containing one electron only
 - drogen molecule
- ded with alpha particles, only a deflection, others pass out se[MNR 1979; NCERT 1980; AFMC 19
 - n on them oving alpha particle is
 - on on the alpha particle to the electrons is very small
 - nucleus and large number of
 - pies much smaller volume lume of the atom
- Positronium consists of an electron and a positron (a particle which has the same mass as an electron, but opposite charge) orbiting round their common centre of

[NCERT 1977]

(a) 7 protons and 10 electrons

mass. Calculate the value of the Rydberg constant for this system.

- (a) $R_{\infty}/4$
- (b) $R_{\infty}/2$
- (c) $2R_{\infty}$
- (d) R_{∞}
- 7. When α -particles are sent through a thin metal foil, most of them go straight through the foil because (one or more are correct) [IIT 1984]
 - (a) Alpha particles are much heavier than electrons
 - (b) Alpha particles are positively charged
 - (c) Most part of the atom is empty space
 - (d) Alpha particles move with high velocity
- **8.** When an electron jumps from L to K shell

[CPMT 1983]

- (a) Energy is absorbed
- (b) Energy is released
- (c) Energy is sometimes absorbed and sometimes released $% \left(1\right) =\left(1\right) \left(1$
 - (d) Energy is neither absorbed nor released
- 9. When beryllium is bombarded with α -particles, extremely penetrating radiations which cannot be deflected by electrical or magnetic field are given out. These are

[CPMT 1983]

- (a) A beam of protons
- (b) α -rays
- (c) A beam of neutrons
- (d) X-rays
- 10. Which one of the following is not the characteristic of Planck's quantum theory of radiation [AIIMS 1991]
 - (a) The energy is not absorbed or emitted in whole number or multiple of quantum
 - (b) Radiation is associated with energy
 - (c) Radiation energy is not emitted or absorbed continuously but in the form of small packets called quanta
 - (d) This magnitude of energy associated with a quantum is proportional to the frequency
- 11. The spectrum of He is expected to be similar to

[A IIMS 1980, 91; DPMT 1983; MP PMT 2002]

- (a) *H*
- (b) Li⁺
- (c) Na
- (d) He+
- 12. Energy of orbit

- [DPMT 1984, 91]
- (a) Increases as we move away from nucleus
 - (b) Decreases as we move away from nucleus
 - (c) Remains same as we move away from nucleus
 - (d) None of these
- 13. Bohr model of an atom could not account for
 - (a) Emission spectrum
 - (b) Absorption spectrum
 - (c) Line spectrum of hydrogen
 - (d) Fine spectrum
- **14.** Existence of positively charged nucleus was established by

[CBSE PMT 1991]

- (a) Positive ray analysis
- (b) α -ray scattering experiments
- (c) X-ray analysis
- (d) Discharge tube experiments
- **15.** Electron occupies the available orbital singly before pairing in any one orbital occurs, it is **[CBSE PMT 1991]**
 - (a) Pauli's exclusion principle
 - (b) Hund's Rule
 - (c) Heisenberg's principle
 - (b) Prout's hypothesis
- **16.** The wavelength of a spectral line for an electronic transition is inversely related to **[IIT 1988]**
 - (a) The number of electrons undergoing the transition
 - (b) The nuclear charge of the atom
 - (c) The difference in the energy of the energy levels involved in the transition
 - (d) The velocity of the electron undergoing the transition
- 17. When an electron drops from a higher energy level to a low energy level, then **[AMU 1985]**
 - (a) Energy is emitted
 - (b) Energy is absorbed
 - (c) Atomic number increases
 - (d) Atomic number decreases
- 18. Davisson and Germer's experiment showed that

[MA DT Bihar 1983]

- (a) β -particles are electrons
- (b) Electrons come from nucleus
- (c) Electrons show wave nature
- (d) None of the above
- 19. When an electron jumps from lower to higher orbit, its energy [MADT Bihar 1982]
 - (a) Increases
- (b) Decreases
- (c) Remains the same
- (d) None of these
- 20. Experimental evidence for the existence of the atomic nucleus comes from [CBSE PMT 1989]
 - (a) Millikan's oil drop experiment
 - (b) Atomic emission spectroscopy
 - (c) The magnetic bending of cathode rays
 - (d) Alpha scattering by a thin metal foil
- 21. Which of the following statements does not form part of Bohr's model of the hydrogen atom [CBSE PMT 1989]
 - (a) Energy of the electrons in the orbit is quantized
 - (b) The electron in the orbit nearest the nucleus has the lowest energy
- (c) Electrons revolve in different orbits around the nucleus
 - (d) The position and velocity of the electrons in the orbit cannot be determined simultaneously
- 22. When β -particles are sent through a tin metal foil, most of them go straight through the foil as **[EAMCET 1983]**
 - (a) β -particles are much heavier than electrons
 - (b) β -particles are positively charged
 - (c) Most part of the atom is empty space

- (d) β -particles move with high velocity
- The energy of second Bohr orbit of the hydrogen atom is -23. 3 28 kJ mol⁻¹, hence the energy of fourth Bohr or bit would be

[CBSE PMT 2005]

- (a) $-41 \, kJ \, mol^{-1}$
- (b) -1312 kJ mol-1
- (c) $-164 \, kJ \, mol^{-1}$
- (d) $-82 \, kJ \, mol^{-1}$
- When an electron revolves in a stationary orbit then 24.

[MP PET 1994]

- (a) It absorbs energy
- (b) It gains kinetic energy
- (c) It emits radiation
- (d) Its energy remains constant
- A moving particle may have wave motion, if 25.
 - (a) Its mass is very high
 - (b) Its velocity is negligible
 - (c) Its mass is negligible
 - (d) Its mass is very high and velocity is negligible
- The postulate of Bohr theory that electrons jump from one orbit to the other, rather than flow is according to
 - (a) The quantisation concept
 - (b) The wave nature of electron
 - (c) The probability expression for electron
 - (d) Heisenberg uncertainty principle
- The frequency of an electromagnetic radiation is **27.** $2 \times 10^6 Hz$. What is its wavelength in metres

(Velocity of light = $3 \times 10^8 \, ms^{-1}$)

- (a) 6.0×10^{14}
- (b) 1.5×10^4
- (c) 1.5×10^2
- (d) 0.66×10^{-2}
- What is the packet of energy called **28.**
 - [AFMC 2005]
 - (a) Electron
- (b) Photon
- (c) Positron
- (d) Proton
- The energy of an electron in n^{th} orbit of hydrogen atom is 29.

[MP PET 1999]

- (a) $\frac{13.6}{n^4} eV$
- (b) $\frac{13.6}{n^3} eV$
- (c) $\frac{13.6}{n^2} eV$
- (d) $\frac{13.6}{r} eV$
- If wavelength of photon is $2.2 \times 10^{-11} m$, $h = 6.6 \times 10^{-34} J$ sec, then momentum of photon is [MP PET 1999]

 - (a) $3 \times 10^{-23} \, kg \, ms^{-1}$ (b) $3.33 \times 10^{22} \, kg \, ms^{-1}$
 - (c) $1.452 \times 10^{-44} \ kg \ ms^{-1}$ (d) $6.89 \times 10^{43} \ kg \ ms^{-1}$
- 31. The expression for Bohr's radius of an atom is

[MP PMT 1999]

- (a) $r = \frac{n^2 h^2}{4\pi^2 m e^4 z^2}$ (b) $r = \frac{n^2 h^2}{4\pi^2 m e^2 z}$ (c) $r = \frac{n^2 h^2}{4\pi^2 m e^2 z^2}$ (d) $r = \frac{n^2 h^2}{4\pi^2 m^2 e^2 z^2}$
- The energy of an electron revolving in n^{th} Bohr's orbit of an atom is given by the expression [MP PMT 1999]

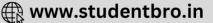
- (a) $E_n = -\frac{2\pi^2 m^4 e^2 z^2}{n^2 h^2}$ (b) $E_n = -\frac{2\pi^2 m e^2 z^2}{n^2 h^2}$ (c) $E_n = -\frac{2\pi^2 m e^4 z^2}{n^2 h^2}$ (d) $E_n = -\frac{2\pi m^2 e^2 z^4}{n^2 h^2}$

- Who modified Bohr's theory by introducing elliptical 33. orbits for electron path [CBSE PMT 1999; AFMC 2003]
 - (a) Hund
- (b) Thom son
- (c) Rutherford
- (d) Sommerfield
- Bohr's radius can have 34. (a) Discrete values
- (b) +ve values

- (c) -ve values
- (d) Fractional values
- The first use of quantum theory to explain the structure of 35. atom was made by [IIT 1997; CPMT 2001; J&K CET 2005]
 - (a) Heisenberg
- (b) Bohr
- (c) Planck
- (d) Einstein
- An electronic transition from 1s orbital of an atom causes 36.

[JIPMER 1997]

[DPMT 1996]


- (a) Absorption of energy
- (b) Release of energy
- (c) Both release or absorption of energy
- (d) Unpredictable
- In an element going away from nucleus, the energy of 37. [RPMT 1997] particle
 - (a) Decreases
- (b) Not changing
- (c) Increases
- (d) None of these
- 38. The α -particle scattering experiment of Rutherford concluded that [Orissa JEE 1997]
 - (a) The nucleus is made up of protons and neutrons
 - (b) The number of electrons is exactly equal to number of protons in atom
 - (c) The positive charge of the atom is concentrated in a very small space
 - (d) Electrons occupy discrete energy levels
- Wavelength associated with electron motion [BHU 1998] 39.
 - (a) Increases with increase in speed of electron
 - (b) Remains same irrespective of speed of electron
 - (c) Decreases with increase in speed of e^{-}
 - (d) Is zero
- The element used by Rutherford in his famous scattering experiment was
 - (a) Gold
- (b) Tin
- (c) Silver
- (d) Lead
- If electron falls from n = 3 to n = 2, then emitted energy 41.

[AFMC 1997; MP PET 2003]

- (a) 10.2eV
- (b) 12.09eV
- (c) 1.9eV
- (d) 0.65eV
- The radius of the nucleus is related to the mass number 42. A by
 - (a) $R = R_a A^{1/2}$
- (b) $R = R_o A$
- (c) $R = R_0 A^2$
- (d) $R = R_a A^{1/3}$
- **43.** The specific charge of proton is $9.6 \times 10^6 \, C \, kg^{-1}$ then for an α -particle it will be [MH CET 1999]

- (a) $38.4 \times 10^7 \, C \, kg^{-1}$
- (b) $19.2 \times 10^7 C kg^{-1}$
- (c) $2.4 \times 10^7 C kg^{-1}$
- (d) $4.8 \times 10^7 C kg^{-1}$
- 44. In hydrogen spectrum the different lines of Lyman series are present is [UPSEAT 1999]
 - (a) UV field
- (b) IR field
- (c) Visible field
- (d) Far IR field
- **45.** Which one of the following is considered as the main postulate of Bohr's model of atom **[AMU 2000]**
 - (a) Protons are present in the nucleus
 - (b) Electrons are revolving around the nucleus
 - (c) Centrifugal force produced due to the revolving electrons balances the force of attraction between the electron and the protons
 - (d) Angular momentum of electron is an integral multiple of \underline{h}
- **46.** The electronic energy levels of the hydrogen atom in the Bohr's theory are called **[AMU 2000]**
 - (a) Rydberg levels
- (b) Orbits
- (c) Ground states
- (d) Orbitals
- 47. The energy of a photon is calculated by [Pb. PMT 2000]
 - (a) E = h v

 2π

- (b) h = Ev
- (c) $h = \frac{E}{V}$
- (d) $E = \frac{h}{v}$
- **48.** Visible range of hydrogen spectrum will contain the following series **[RPET 2000]**
 - (a) Pfund
- (b) Lyman
- (c) Balmer
- (d) Brackett
- 49. Radius of the first Bohr's orbit of hydrogen atom is

[RPET 2000]

- (a) 1.06 Å
- (b) 0.22 Å
- (c) 0.28 Å
- (d) 0.53 Å
- **50.** In Balmer series of hydrogen atom spectrum which electronic transition causes third line [MP PMT 2000]
 - (a) Fifth Bohr orbit to second one
 - (b) Fifth Bohr orbit to first one
 - (c) Fourth Bohr orbit to second one
 - (d) Fourth Bohr orbit to first one
- **51.** Energy of electron of hydrogen atom in second Bohr orbit is

[MP PMT 2000]

- (a) $-5.44 \times 10^{-19} J$
- (b) $-5.44 \times 10^{-19} kJ$
- (c) $-5.44 \times 10^{-19} \ cal$
- (d) $-5.44 \times 10^{-19} eV$
- **52.** If change in energy $(\Delta E) = 3 \times 10^{-8} J$, $h = 6.64 \times 10^{-34} J$ s and $c = 3 \times 10^{8} m/s$, then wavelength of the light is

[CBSE PMT 2000]

- (a) $6.36 \times 10^3 \text{ Å}$
- (b) $6.36 \times 10^5 \text{ Å}$
- (c) $6.64 \times 10^{-8} \text{ Å}$
- (d) $6.36 \times 10^{18} \text{ Å}$
- The radius of first Bohr's orbit for hydrogen is 0.53 Å. The radius of third Bohr's orbit would be [MP PMT 2001]
 - (a) 0.79 Å
- (b) 1.59 Å
- (c) 3.18 Å
- (d) 4.77 Å

- **54.** Rutherford's α-particle scattering experiment proved that atom has [MP PMT 2001]
 - (a) Electrons
- (b) Neutron
- (c) Nucleus
- (d) Orbitals
- **55.** Wavelength of spectral line emitted is inversely proportional to
 - (a) Radius
- (b) Energy
- (c) Velocity
- (d) Quantum number
- **56.** The energy of a radiation of wavelength 8000 Å is E_1 and energy of a radiation of wavelength 16000 Å is E_2 . What is the relation between these two **[Kerala CET 2005]**
 - (a) $E_1 = 6E_2$
- (b) $E_1 = 2E_2$
- (c) $E_1 = 4E_2$
- (d) $E_1 = 1/2E_2$
- (e) $E_1 = E_2$
- 57. The formation of energy bonds in solids are in accordance with [DCE 2001]
 - (a) Heisenberg's uncertainty principle
 - (b) Bohr's theory
 - (c) Ohm's law
 - (d) Rutherford's atomic model
- **58.** The frequency of y ellow light having wavelength 600 nm is

[MP PET 2002]

- (a) $5.0 \times 10^{14} Hz$
- (b) $2.5 \times 10^7 \, Hz$
- (c) $5.0 \times 10^7 Hz$
- (d) $2.5 \times 10^{14} Hz$
- **59.** The value of the energy for the first excited state of hydrogen atom will be **[MP PET 2002]**
 - (a) $-13.6 \, eV$
- (b) $-3.40 \, eV$
- (c) -1.51eV
- (d) $-0.85 \, eV$
- **60.** Bohr model of atom is contradicted by **[MP PMT 2002]**
 - (a) Pauli's exclusion principle
 - (b) Planck quantum theory
 - (c) Heisenberg uncertainty principle
 - (d) All of these
- 61. Which of the following is not true in Rutherford's nuclear model of atom [Orissa JEE 2002]
 - (a) Protons and neutrons are present inside nucleus
 - (b) Volume of nucleus is very small as compared to volume of atom
 - (c) The number of protons and neutrons are always equal
 - (d) The number of electrons and protons are always equal
- **62.** The emission spectrum of hydrogen is found to satisfy the expression for the energy change. ΔE (in joules) such

that $\Delta E = 2.18 \times 10 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) J$ where $n_1 = 1, 2, 3, \dots$ and

 $n_2 = 2, 3, 4...$ The spectral lines correspond to Paschen series to [UPSEAT 2002]

- (a) $n_1 = 1$ and $n_2 = 2, 3, 4$
- (b) $n_1 = 3$ and $n_2 = 4, 5, 6$
- (c) $n_1 = 1$ and $n_2 = 3, 4, 5$
- (d) $n_1 = 2$ and $n_2 = 3, 3, 5$
- (e) $n_1 = 1$ and $n_2 = infinity$

The ratio between kinetic energy and the total energy of the electrons of hydrogen atom according to Bohr's model

[Pb. PMT 2002]

- (a) 2:1
- (b) 1:1
- (c) 1:-1
- (d) 1:2
- Energy of the electron in Hydrogen atom is given by 64. [AMU (Engg.) 2002]

(a) $E_n = -\frac{131.38}{n^2} kJ \ mol^{-1}$ (b) $E_n = -\frac{131.33}{n} kJ \ mol^{-1}$

- (c) $E_n = -\frac{1313.3}{n^2} kJ \, mol^{-1}$ (d) $E_n = -\frac{313.13}{n^2} kJ \, mol^{-1}$
- Ratio of radii of second and first Bohr orbits of H atom
 - (a) 2

(b) 4

- (c) 3
- (d) 5
- The frequency corresponding to transition n = 2 to n = 166. in hydrogen atom is [MP PET 2003]
 - (a) $15.66 \times 10^{10} Hz$
- (b) $24.66 \times 10^{14} Hz$
- (c) $30.57 \times 10^{14} Hz$
- (d) $40.57 \times 10^{24} Hz$
- The mass of a photon with a wavelength equal to $1.54 \times 10^{-8} \, cm$ is [Pb. PMT 2004]
- (a) $0.8268 \times 10^{-34} \, kg$
- (b) $1.2876 \times 10^{-33} kg$
- (c) $1.4285 \times 10^{-32} kg$
- (d) $1.8884 \times 10^{-32} kg$
- Splitting of spectral lines under the influence of magnetic 68. field is called [MP PET 2004]
 - (a) Zeeman effect
- (b) Stark effect
- (c) Photoelectric effect
- (d) None of these
- 69. The radius of electron in the first excited state of hydrogen atom is [MP PMT 2004]
 - (a) a_0
- (b) $4a_0$
- (c) $2a_0$
- (d) $8a_0$
- The ratio of area covered by second orbital to the first orbital is [AFMC 2004]
 - (a) 1:2
- (b) 1:16
- (d) 16:1
- Time taken for an electron to complete one revolution in the Bohr orbit of hydrogen atom is [Kerala PMT 2004]

- The radius of which of the following orbit is same as that of the first Bohr's orbit of hydrogen atom

[IIT Screening 2004]

- (a) $He^+(n=2)$
- (b) $Li^{2+}(n=2)$
- (c) $Li^{2+}(n=3)$
- (d) $Be^{3+}(n=2)$
- The frequency of radiation emitted when the electron falls **73**. from n = 4 to n = 1 in a hydrogen atom will be (Given ionization energy of $H = 2.18 \times 10^{-18} J$ atom⁻¹ and

 $h = 6.625 \times 10^{-34} Js$)

[CBSE PMT 2004]

- (a) $3.08 \times 10^{15} \, s^{-1}$
- (b) $2.00 \times 10^{15} \, s^{-1}$
- (c) $1.54 \times 10^{15} \, s^{-1}$
- (d) $1.03 \times 10^{15} \, s^{-1}$

The wavelength of the radiation emitted, when in a hy drogen atom electron falls from infinity to stationary state 1, would be (Rydberg constant = $1.097 \times 10^7 m^{-1}$)

[AIEEE 2004]

- (a) 406 nm
- (b) 192 nm
- (c) 91 nm
- (d) $9.1 \times 10^{-8} nm$
- In Bohr's model, atomic radius of the first orbit is γ , the radius of the 3rd orbit, is [MP PET 1997; Pb. CET 2001]
 - (a) $\gamma/3$
- (b) v
- (c) 3γ
- (d) 9γ
- According to Bohr's principle, the relation between **76.** principle quantum number (n) and radius of orbit is [BHU 2004]
- (b) $r \propto n^2$
- (c) $r \propto \frac{1}{r}$
- (d) $r \propto \frac{1}{n^2}$
- The ionisation potential of a hydrogen atom is -13.6~eV. What will be the energy of the atom corresponding to

[Pb. CET 2000]

- (a) $-3.4 \, eV$
- (b) -6.8 eV
- (c) -1.7 eV
- (d) $-2.7 \ eV$
- The energy of electron in hydrogen atom in its grounds state is -13.6 eV. The energy of the level corresponding to the quantum number equal to 5 is [Pb. CET 2002]
 - (a) -0.54 *eV*
- (b) $-0.85 \, eV$
- (c) -0.64 eV
- (d) $-0.40 \, eV$
- The positive charge of an atom is [AFMC 2002]
 - (a) Spread all over the atom
 - (b) Distributed around the nucleus
 - (c) Concentrated at the nucleus
 - (d) All of these
- A metal surface is exposed to solar radiations [DPMT 2005] 80.
 - (a) The emitted electrons have energy less than a maximum value of energy depending upon frequency of incident radiations
 - The emitted electrons have energy less than maximum value of energy depending upon intensity of incident radiation
 - (c) The emitted electrons have zero energy
 - (d) The emitted electrons have energy equal to energy of photos of incident light
- Which of the following transitions have minimum wavelength [DPMT 2005]
 - (a) $n_4 \rightarrow n_1$
- (b) $n_2 \to n_1$
- (c) $n_4 \rightarrow n_2$

Dual nature of electron

- De broglie equation describes the relationship of wavelengt h associated with the motion of an electron and its[MP PMT 1986]
 - (a) Mass
- (b) Energy
- (c) Momentum
- (d) Charge
- The wave nature of an electron was first given by 2. [CMC Vellore 1991; Pb. PMT 1998; CPMT 2004]
 - (a) De-Broglie
- (b) Heisenberg
- (c) Mosley
- (d) Sommerfield

- Among the following for which one mathematical 3. expression $\lambda = \frac{h}{n}$ stands

 - (a) De Broglie equation (b) Einstein equation

 - (c) Uncertainty equation (d) Bohr equation
- Which one of the following explains light both as a stream 4. of particles and as wave motion

[A IIMS 1983; IIT 1992; UPSEAT 2003]

- (a) Diffraction
- (b) $\lambda = h/p$
- (c) Interference
- (d) Photoelectric effect
- In which one of the following pairs of experimental 5. observations and phenomenon does the experimental observation correctly account for phenomenon

Experimental observation Phenomenon

- (a) X -ray spectra
- Charge on the nucleus
- (b) α -particle scattering Quantized electron orbit
- (c) Emission spectra
 - The quantization of energy
- (d) The photoelectric effect The nuclear atom
- Which of the following expressions gives the de-Broglie 6. relationship[MP PMT 1996, 2004; MP PET/PMT 1998]
 - (a) $h = \frac{\lambda}{mv}$
- (b) $\lambda = \frac{h}{mv}$
- (c) $\lambda = \frac{m}{hv}$
- (d) $\lambda = \frac{v}{mh}$
- de-Broglie equation is 7.

[MP PMT 1999; CET Pune 1998]

- (a) $n\lambda = 2d\sin\theta$
- (b) E = hv
- (c) $E = mc^2$
- (d) $\lambda = \frac{h}{mv}$
- 8. The de-Broglie wavelength of a particle with mass 1gm and velocity 100m / sec is [CBSE PMT 1999; EAMCET 1997; AFMC 1999; AIIMS 2000]
 - (a) $6.63 \times 10^{-33} m$
- (b) $6.63 \times 10^{-34} m$
- (c) $6.63 \times 10^{-35} m$
- (d) $6.65 \times 10^{-35} m$
- Minimum de-Broglie wavelength is associated with [RPMT 9.
 - (a) Electron
- (b) Proton
- (c) CO, molecule
- (d) SO, molecule
- The de-Broglie wav elength associated with a material particle is [JIPMER 2000]
 - (a) Directly proportional to its energy
 - (b) Directly proportional to momentum
 - (c) Inversely proportional to its energy
 - (d) Inversely proportional to momentum
- An electron has kinetic energy $2.8 \times 10^{-23} J$. de-Broglie 11. wavelength will be nearly

$$(m_e = 9.1 \times 10^{-31} kg)$$

[MP PET 2000]

- (a) $9.28 \times 10^{-4} m$ (b) $9.28 \times 10^{-7} m$
- (c) $9.28 \times 10^{-8} m$
- (d) $9.28 \times 10^{-10} m$
- What will be de-Broglie wavelength of an electron moving with a velocity of 1.2×10^5 ms⁻¹ [MP PET 2000]
 - (a) 6.068×10^{-9}
- (b) 3.133×10^{-37}
- (c) 6.626×10^{-9}
- (d) 6.018×10^{-7}

The de-Broglie wavelength associated with a particle of 13. mass 10^{-6} kg moving with a velocity of 10 ms^{-1} , is

[AIIMS 2001]

- (a) $6.63 \times 10^{-22} m$
- (b) $6.63 \times 10^{-29} m$
- (c) $6.63 \times 10^{-31} m$
- (d) $6.63 \times 10^{-34} m$
- What is the de-Broglie wav elength associated with the 14. hydrogen electron in its third orbit [AMU (Engg.) 2002]
 - (a) $9.96 \times 10^{-10} \, cm$
- (b) $9.96 \times 10^{-8} \, cm$
- (c) $9.96 \times 10^4 cm$
- (d) $9.96 \times 10^8 \, cm$
- If the velocity of hydrogen molecule is 5×10^4 cm sec⁻¹, then if Add M Sog Me 3 lavelength is [MP PMT 2003]
 - (a) 2 Å
- (b) 4 Å
- (c) 8 Å
- (d) 100 Å
- A 200g golf ball is moving with a speed of 5 m per hour. The associated wave length is $(h = 6.625 \times 10^{-34} J - sec)$

[MP PET 2003]

- (a) $10^{-10} m$
- (b) $10^{-20} m$
- (c) $10^{-30} m$
- (d) $10^{-40} m$
- A cricket ball of 0.5 kg is moving with a velocity of 17. $100 \, m \, / \, \text{sec}$. The wavelength associated with its motion is

[DCE 2004]

[MP PMT 2004]

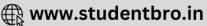
- (a) 1/100*cm*
- (b) $6.6 \times 10^{-34} m$
- (c) $1.32 \times 10^{-35} m$
- (d) $6.6 \times 10^{-28} \, m$
- 18. Dual nature of particles was proposed by [DCE 2004]
 - (a) Heisenberg
- (b) Lowry
- (c) de-Broglie (d) Schrodinger
- Calculate de-Broglie wavelength of an electron travelling at 1% of the speed of light [DPMT 2004]
 - (a) 2.73×10^{-24}
- (b) 2.42×10^{-10}
- (c) 242.2×10^{10}
- (d) None of these
- Which is the correct relationship between wavelength and momentum of particles [Pb. PMT 2000]
 - (a) $\lambda = \frac{h}{P}$
- (b) $\pi = \frac{h}{P}$

- The de-Broglie equation applies (a) To electrons only
- - (b) To neutrons only
 - (c) To protons only
 - (d) All the material object in motion

Uncertainty principle and Schrodinger wave equation

The uncertainty principle was enunciated by

[NCERT 1975; Bihar MEE 1997]


- (a) Einstein
- (b) Heisenberg
- (c) Rutherford
- (d) Pauli
- According to heisenberg uncertainty principle

[AMU 1990; BCECE 2005]

- (a) $E = mc^2$
- (b) $\Delta x \times \Delta p \ge \frac{h}{4\pi}$

- (c) $\lambda = \frac{h}{p}$
- (d) $\Delta x \times \Delta p = \frac{h}{6\pi}$
- 3. "The position and velocity of a small particle like electron cannot be simultaneously determined." This statement is

[NCERT 1979; BHU 1981, 87]

- (a) Heisenberg uncertainty principle
- (b) Principle of de Broglie's wave nature of electron
- (c) Pauli's exclusion principle
- (d) Aufbau's principle
- In Heisenberg's uncertainty equation $\Delta x \times \Delta p \ge \frac{h}{4\pi}$; Δp 4. stands for
 - (a) Uncertainty in energy
 - (b) Uncertainty in velocity
 - (c) Uncertainty in momentum
 - (d) Uncertainty in mass
- Which one is not the correct relation in the following 5.
 - (a) $h = \frac{E}{v}$
- (b) $E = mc^2$
- (c) $\Delta x \times \Delta p = \frac{h}{4\pi}$ (d) $\lambda = \frac{h}{mv}$
- The maximum probability of finding an electron in the d_{xy} orbital is [MP PET 1996]
 - (a) Along the x-axis
 - (b) Along the y-axis
 - (c) At an angle of 45° from the x and y-axes
 - (d) At an angle of 90° from the x and y-axes
- Simultaneous determination of exact position and 7. [BHU 1979] momentum of an electron is
 - (a) Possible
 - (b) Impossible
 - (c) Sometimes possible sometimes impossible
 - (d) None of the above
- If uncertainty in the position of an electron is zero, the 8. uncertainty in its momentum would be
 - (a) Zero
- (b) $<\frac{h}{2\lambda}$
- (c) $> \frac{h}{2\lambda}$
- (d) Infinite
- The possibility of finding an electron in an orbital was conceived by [MP PMT 1994]
 - (a) Rutherford
- (b) Bohr
- (c) Heisenberg
- (d) Schrodinger
- Uncertainty principle gave the concept of
 - (a) Probability
 - (b) An orbital
 - (c) Physical meaning of Ψ the Ψ^2
 - (d) All the above
- The uncertainty principle and the concept of wave nature 11. of matter was proposed by and respectively

[MP PET 1997]

(a) Heisenberg, de Broglie(b) de-Broglie, Heisenberg

- (c) Heisenberg, Planck (d) Planck, Heisenberg
- The uncertainty in momentum of an electron is 12. $1 \times 10^{-5} kg - m/s$. The uncertainty in its position will be $(h = 6.62 \times 10^{-34} kg - m^2 / s)$

[AFMC 1998; CBSE PMT 1999; JIPMER 2002]

- (a) $1.05 \times 10^{-28} m$
- (b) $1.05 \times 10^{-26} m$
- (c) $5.27 \times 10^{-30} m$
- (d) $5.25 \times 10^{-28} \, m$
- The uncertainty in the position of a moving bullet of mass 13. 10 gm is $10^{-5} m$. Calculate the uncertainty in its velocity

[DCE 1999]

- (a) $5.2 \times 10^{-28} \, m \, / \, sec$ (b) $3.0 \times 10^{-28} \, m \, / \, sec$
- (c) $5.2 \times 10^{-22} m / sec$
- (d) $3 \times 10^{-22} m / sec$
- **14.** The equation $\Delta x.\Delta p \ge \frac{h}{4\pi}$ shows
 - [MP PET 2000]
 - (a) de-Broglie relation
 - (b) Heisenberg's uncertainty principle
 - (c) Aufbau principle
 - (d) Hund's rule
- Which quantum number is not related with Schrodinger 15. equation [RPMT 2002]
 - (a) Principal
- (b) Azimuthal
- (c) Magnetic
- (d) Spin
- Uncertainty in position of a 0.25 g particle is 10^{-5} . Uncertainty of velocity is $(h = 6.6 \times 10^{-34} Js)$ [AIEEE 2002]
 - (a) 1.2×10^{34}
- (b) 2.1×10^{-29}
- (c) 1.6×10^{-20}
- (d) 1.7×10^{-9}
- The uncertainty in momentum of an electron is 17. $1 \times 10^{-5} kg \, m \, / \, s$. The uncertainty in its position will be

$$(h = 6.63 \times 10^{-34} \ Js)$$

- (a) $5.28 \times 10^{-30} m$
- (b) $5.25 \times 10^{-28} \, m$
- (c) $1.05 \times 10^{-26} m$
- (d) $2.715 \times 10^{-30} m$
- According to Heisenberg's uncertainty principle, the product of uncertainties in position and velocities for an electron of mass $9.1 \times 10^{-31} kg$ is
 - (a) $2.8 \times 10^{-3} \, m^2 \, s^{-1}$
- (b) $3.8 \times 10^{-5} m^2 s^{-1}$
- (c) $5.8 \times 10^{-5} \, m^2 \, s^{-1}$
- (d) $6.8 \times 10^{-6} \, m^2 \, s^{-1}$
- For an electron if the uncertainty in velocity is Δv , the uncertainty in its position (Δx) is given by **[DPMT 2005]**
 - (a) $\frac{hm}{4\pi\Delta v}$
- (c) $\frac{h}{4\pi m \Delta v}$
- **20.** Orbital is
- [DPMT 2005]
- (a) Circular path around the nucleus in which the electron revolves
- (b) Space around the nucleus where the probability of finding the electron is maximum
- (c) Amplitude of electrons wave
- (d) None of these

Quantum number, Electronic configuration

and Shape of orbitals

_ •	•	[MNR 1985]
1.	Be's 4th electron will have four quantum	numbers

- (a) +1/2
- (b) 1 +1/2 +1
- (c) 2 -1/2
- (d) 2 +1/2
- The quantum number which specifies the location of an 2. electron as well as energy is [DPMT 1983]
 - (a) Principal quantum number
 - (b) Azimuthal quantum number
 - (c) Spin quantum number
 - (d) Magnetic quantum number
- 3. The shape of an orbital is given by the quantum number

[NCERT 1984; MP PMT 1996]

(a) n

(b) 1

- (c) m
- (d) s
- In a given atom notwo electrons can have the same values for all the four quantum numbers. This is called

[BHU 1979; AMU 1983; EAMCET 1980, 83;

MA DT Bihar 1980; CPMT 1986, 90, 92; NCERT 1978, 84; RPMT 1997; CBSE PMT 1991; MP PET 1986, 99]

- (a) Hund's rule
- (b) Aufbau's principle
- (c) Uncertainty principle
- (d) Pauli's exclusion principle
- Nitrogen has the electronic configuration 5. $1s^2, 2s^2 2p_x^1 2p_y^1 2p_z^1$ and not $1s^2, 2s^2 2p_x^2 2p_y^1 2p_z^0$ which is determined by

[DPMT 1982, 83, 89; MP PMT/PET 1988; EAMCET 1988]

- (a) Aufbau's principle
- (b) Pauli's exclusion
- principle (d) Uncertainty principle (c) Hund's rule
- Which one of the following configuration represents a 6. noble gas

DPMT 1984]

- (a) $1s^2, 2s^2 2p^6, 3s^2$
- (b) $1s^2, 2s^2 2p^6, 3s^1$
- (c) $1s^2, 2s^2 2p^6$
- (d) $1s^2, 2s^2sp^6, 3s^23p^6, 4s^2$
- The electronic configuration of silver atom in ground state 7.

[CPMT 1984, 93]

- (a) $[Kr]3d^{10} 4s^1$
- (b) $[Xe]4f^{14}5d^{10}6s^{1}$
- (c) $[Kr]4d^{10}5s^1$
- (d) $[Kr]4d^95s^2$
- 8. Principal, azimuthal and magnetic quantum numbers are respectively related to [CPMT 1988; AIIMS 1999]
 - (a) Size, shape and orientation
 - (b) Shape, size and orientation
 - (c) Size, orientation and shape
 - (d) None of the above
- Correct set of four quantum numbers for valence electron g. of rubidium (Z = 37) is

[IIT 1984; JIPMER 1999; UPSEAT 2003]

- (a) $5,0,0,+\frac{1}{2}$ (b) $5,1,0,+\frac{1}{2}$

- (c) $5, 1, 1, +\frac{1}{2}$
- (d) $6,0,0,+\frac{1}{2}$
- The correct ground state electronic configuration of 10. chromium atom is[IIT 1989, 94; MP PMT 1993; EAMCET 1997; ISM Dh anbad 1994; AFMC 1997; Bihar MEE 1996; MP PET 1995, 97; CPMT 1999; Kerala PMT 2003]
 - (a) $[Ar]3d^5 4s^1$
- (b) $[Ar]3d^4 4s^2$
- (c) $[AR]3d^64s^0$
- (d) $[Ar]4d^54s^1$
- 2p orbitals have
- [NCERT 1981; MP PMT 1993, 97]
- (a) n = 1, l = 2
- (b) n = 1, l = 0
- (c) n = 2, l = 1
- (d) n = 2, l = 0
- Electronic configuration of H^- is 12.
- [CPMT 1985]

- (a) $1s^0$
- (c) $1s^2$
- (d) $1s^1 2s^1$
- The quantum numbers for the outermost electron of an 13. element are given below as $n = 2, l = 0, m = 0, s = +\frac{1}{2}$. The

atoms is

[EAMCET 1978]

- (a) Lithium
- (b) Beryllium
- (c) Hydrogen
- (d) Boron
- Principal quantum number of an atom represents [EA MCET 1979; IIT 1983; MNR 1990; UPSEAT 2000, 02]
 - (a) Size of the orbital
 - (b) Spin angular momentum
 - (c) Orbital angular momentum
 - (d) Space orientation of the orbital
- An element has the electronic configuration 15. $1s^2, 2s^2 2p^6, 3s^2 3p^2$. Its valency electrons are

[NCERT 1973]

(a) 6

(b) 2

(c) 3

- (d) 4
- The magnetic quantum number specifies

[MNR 1986; BHU 1982; CPMT 1989, 94; [CPMT 1983_M\$9_P£3; NCERT-1073; MP PMT (1989;) 1999]

- (a) Size of orbitals
- (b) Shape of orbitals
- (c) Orientation of orbitals (d) Nuclear stability
- Which of the following sets of quantum numbers represent an impossible arrangement[IIT 1986; MP PET 1995]

- (a) 3
- (b) 4

- (c) 3

(d) 5

- -3
- If n = 3, then the value of 'l' which is incorrect 18.

[CPMT 1994]

(a) o


(b) 1

(c) 2

- (d) 3
- Which orbital is dumb-bell shaped

[MP PMT 1986; MP PET/PMT 1998]

- (a) s-orbital
- (b) p -orbital
- (c) d-orbital
- (d) f-orbital
- The total number of unpaired electrons in d orbitals of 20. atoms of element of atomic number 29 is [CPMT 1983]
 - (a) 10
- (b) 1

(c) o

- (d) 5
- The shape of 2p orbital is 21.

[CPMT 1983; NCERT 1979]

- (a) Spherical
- (b) Ellipsoidal
- (c) Dumb-bell
- (d) Pyramidal
- The magnetic quantum number for an electron when the 22. value of principal quantum number is 2 can have

[CPMT 1984]

- (a) 3 values
- (b) 2 values
- (c) 9 values
- (d) 6 values
- Which one is the correct outer configuration of chromium 23.

[AIIMS 1980, 91; BHU 1995]

(a)	\uparrow	1	1	1			$\uparrow\downarrow$
(b)	$\uparrow\downarrow$	$\uparrow\downarrow$	1				
(c)	1	1	1	1	1]	\uparrow
(d)	$\uparrow\downarrow$	$\uparrow\downarrow$	↑	↑	↑		↑

- The following has zero valency 24.
- [DPMT 1991]

- (a) Sodium
- (b) Beryllium
- (c) Aluminium
- (d) Krypton
- The number of electrons in the valence shell of calcium is 25.
 - [IIT 1975]

(a) 6

- (b) 8
- (c) 2
- (d) 4
- 26. The valence electron in the carbon atom are [MNR 1982]
 - (a) o

(b) 2

(c) 4

- (d) 6
- For the dumb-bell shaped orbital, the value of l is 27. [CPMT 1987, 2003]
 - (a) 3

(b) 1

- (c) o
- (d) 2
- Chromium has the electronic configuration $4s^13d^5$ rather than $4s^23d^4$ because
 - (a) 4s and 3d have the same energy
 - (b) 4s has a higher energy than 3d
 - (c) $4s^1$ is more stable than $4s^2$
 - (d) $4s^13d^5$ half-filled is more stable than $4s^23d^4$
- The electronic configuration of calcium ion (Ca^{2+}) is 29. [CMC Vellore 1991]

- (a) $1s^2, 2s^2 2p^6, 3s^2 3p^6, 4s^2$
- (b) $1s^2, 2s^2sp^6, 3s^23p^6, 4s^1$
- (c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^2$
- (d) $1s^2, 2s^2sp^6, 3s^23p^63d^5$
- (e) $1s^2, 2s^2 2p^6, 3s^2 3p^6, 4s^0$
- 30. The structure of external most shell of inert gases is [JIPMER 1991]
 - (a) s^2p^3
- (c) $s^1 p^2$
- (d) $d^{10}s^2$
- The two electrons in K sub-shell will differ in

[MNR 1988; UPSEAT 1999, 2000; Kerala PMT 2003]

- (a) Principal quantum number
- (b) Azimuthal quantum number
- (c) Magnetic quantum number
- (d) Spin quantum number
- A completely filled d -orbital (d^{10}) 32.
 - (a) Spherically symmetrical
 - (b) Has octahedral symmetry
 - (c) Has tetrahedral symmetry
 - (d) Depends on the atom
- If magnetic quantum number of a given atom represented by -3, then what will be its principal quantum number
 - [BHU 2005]

[MNR 1987]

(a) 2

(b) 3

(c) 4

- (d) 5
- The total number of orbitals in an energy level designated by principal quantum number n is equal to

[AIIMS 1997; J&K CET 2005]

- (a) 2n
- (b) $2n^2$

(c) n

- (d) n^2
- The number of orbitals in the fourth principal quantum 35. number will be
 - (a) 4

- (b) 8
- (c) 12
- (d) 16
- Which set of quantum numbers are not possible from the following
 - (a) $n = 3, l = 2, m = 0, s = -\frac{1}{2}$
 - (b) $n = 3, l = 2, m = -2, s = -\frac{1}{2}$
 - (c) $n = 3, l = 3, m = -3, s = -\frac{1}{2}$
 - (d) $n = 3, l = 0, m = 0, s = -\frac{1}{2}$
- The four quantum number for the valence shell electron **37**• or last electron of sodium (Z = 11) is [MP PMT 1999]


(a)
$$n = 2, l = 1, m = -1, s = -\frac{1}{2}$$

- (b) $n = 3, l = 0, m = 0, s = +\frac{1}{2}$
- (c) $n = 3, l = 2, m = -2, s = -\frac{1}{2}$
- (d) $n = 3, l = 2, m = 2, s = +\frac{1}{2}$
- The explanation for the presence of three unpaired electrons in the nitrogen atom can be given by

[NCERT 1979; RPMT 1999; DCE 1999, 2002; CPMT 2001; MP PMT 2002; Pb. PMT / CET 2002]

- (a) Pauli's exclusion principle
- (b) Hund's rule
- (c) Aufbau's principle
- (d) Uncertainty principle
- The maximum energy is present in any electron at
 - (a) Nucleus
 - (b) Ground state
 - (c) First excited state

- (d) Infinite distance from the nucleus
- **40.** The electron density between 1s and 2s orbital is
 - (a) High
- (b) Low
- (c) Zero
- (d) None of these
- **41.** For *ns* orbital, the magnetic quantum number has value
 - (a) 2

- (b) 4
- (c) 1
- (d) o
- **42.** The maximum number of electrons that can be accommodated in the M^{th} shell is
 - (a) 2

- (b) 8
- (c) 18
- (d) 32
- **43.** For a given value of quantum number l, the number of allowed values of m is given by
 - (a) l+2
- (b) 2l+2
- (c) 2l+1
- (d) l+1
- **44.** The number of radial nodes of 3s and 2p orbitals are respectively. **[IIT-JEE 2005]**
 - (a) 2, 0
- (b) 0, 2
- (c) 1, 2
- (d) 2, 1
- 45. Which of the sub-shell is circular
 - (a) 4s
- (b) 4 f
- (c) 4p
- (d) 4d
- **46.** Which electronic configuration for oxygen is correct according to Hund's rule of multiplicity
 - (a) $1s^2, 2s^2 2p_x^2 2p_y^1 2p_z^1$
- (b) $1s^2, 2s^2 2p_x^2 2p_y^2 2p_z^0$
- (c) $1s^2, 2s^2 2p_x^3 2p_y^1 2p_z^0$
- (d) None of these
- **47.** If value of azimuthal quantum number *l* is 2, then total possible values of magnetic quantum number will be
 - (a) 7

(b) 5

(c) 3

- (d) 2
- **48.** The type of orbitals present in Fe is
 - (a) s

- (b) s and p
- (c) s, p and d
- (d) s, p, d and f
- **49.** The shape of d_{xy} orbital will be
 - (a) Circular
- (b) Dumb-bell
- (c) Double dumb-bell
- (d) Trigonal
- **50.** In any atom which sub-shell will have the highest energy in the following
 - (a) 3p
- (b) 3*d*
- (c) 4s
- (d) 3s
- **51.** Which electronic configuration is not observing the (n+l) rule
 - (a) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^1, 4s^2$
 - (b) $1s^2, 2s^2sp^6, 3s^23p^63d^7, 4s^2$
 - (c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^4$
 - (d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^8, 4s^2$
- **52.** The four quantum numbers of the outermost orbital of K (atomic no. =19) are [MP PET 1993, 94]
 - (a) $n = 2, l = 0, m = 0, s = +\frac{1}{2}$

- (b) $n = 4, l = 0, m = 0, s = +\frac{1}{2}$
- (c) $n = 3, l = 1, m = 1, s = +\frac{1}{2}$
- (d) $n = 4, l = 2, m = -1, s = +\frac{1}{2}$
- 53. The angular momentum of an electron depends on
 - (a) Principal quantum number
 - (b) Azimuthal quantum number
 - (c) Magnetic quantum number
 - (d) All of these
- **54.** The electronic configuration of copper $\binom{29}{29}$ Cu) is

[DPMT 1983; BHU 1980; AFMC 1981; CBSE PMT 1991; MP PMT 1995]

- (a) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^9, 4s^2$
- (b) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^1$
- (c) $1s^2.2s^22p^6,3s^23p^6,4s^24p^6$
- (d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}$
- **55.** The number of orbitals in 2p sub-shell is

[NCERT 1973; MP PMT 1996]

(a) 6

- (b) 2
- (c) 3

- (d) 4
- **56.** The number of orbitals in d sub-shell is **[MNR 1981]**
 - (a) 1

(b) 3

(c) 5

- (d) 7
- 57. A sub-shell l=2 can take how many electrons
 - [NCERT 1973, 78]

(a) 3

(b) 10

(c) 5

- (d) 6
- **58.** Pauli's exclusion principle states that

[MNR 1983; AMU1984]

- (a) Two electrons in the same atom can have the same energy
- (b) Two electrons in the same atom cannot have the same spin
- (c) The electrons tend to occupy different orbitals as far as possible
- (d) Electrons tend to occupy lower energy orbitals preferentially
- (e) None of the above
- **59.** For d electrons, the azimuthal quantum number is

[MNR 1983; CPMT 1984]

- (a) o
- (b) 1
- (c) 2
- (d) 3
- **60.** For p -orbital, the magnetic quantum number has value
 - (a) 2
- (b) 4, 4
- (c) -1, 0, +1
- (d) o
- 61. For n = 3 energy level, the number of possible orbitals (all kinds) are [BHU 1981; CPMT 1985; MP PMT 1995]
 - (a) 1

(b) 3

(c) 4

(d) 9

- Which of the following ions is not having the configuration of neon
 - (a) F
- (b) Mg^{+2}
- (c) Na^+
- (d) Cl-
- Elements up to atomic number 103 have been synthesized 63. and studied. If a newly discovered element is found to have an atomic number 106, its electronic configuration

[AIIMS 1980]

- (a) $[Rn]5f^{14},6d^4,7s^2$
- (b) $[Rn]5f^{14},6d^1,7s^27p^3$
- (c) $[Rn]5f^{14},6d^6,7s^0$
- (d) $[Rn]5f^{14},6d^5,7s^1$
- Ions which have the same electronic configuration are 64. those of

 - (a) Lithium and sodium (b) Sodium and potassium
 - (c) Potassium and calcium (d) Oxygen and chlorine
- When the azimuthal quantum number has a value of l = 0, the shape of the orbital is [MP PET 1995]
 - (a) Rectangular
- (b) Spherical
- (c) Dumbbell
- (d) Unsymmetrical
- The magnetic quantum number for valency electrons of 66. sodium is [CPMT 1988; MH CET 1999]
 - (a) 3

(b) 2

(c) 1

- (d) o
- The electronic configuration of an element with atomic 67. [CPMT 1982, 84, 87] number 7 i.e. nitrogen atom is
 - (a) $1s^2, 2s^1, 2p_x^3$
- (b) $1s^2, 2s^2 2p_x^2 2p_y^1$
- (c) $1s^2, 2s^2 2p_x^1 2p_x^1 2p_z^1$
- (d) $1s^2, 2s^2 2p_x^1 2p_y^2$
- In a multi-electron atom, which of the following orbitals **68.** described by the three quantum members will have the same energy in the absence of magnetic and electric fields

[A IEEE 2005]

- (1) n = 1, l = 0, m = 0
- (2) n = 2, l = 0, m = 0
- (3) n = 2, l = 1, m = 1
- (4) n = 3, l = 2, m = 0
- (5) n = 3, l = 2, m = 0
- (a) (1) and (2)
- (b) (2) and (3)
- (c) (3) and (4)
- (d) (4) and (5)
- Which of the following represents the electronic 69. configuration of an element with atomic number 17

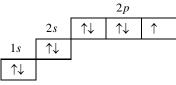
[AMU 1982]

- (a) $1s^2, 2s^2 2p^6, 3s^1 3p^6$
- (b) $1s^2, 2s^2 2p^6, 3s^2 3p^4, 4s^1$
- (c) $1s^2, 2s^2 2p^6, 3s^2 3p^5$
- (d) $1s^2, 2s^2 2p^6, 3s^1 3p^4, 4s^2$
- The shape of s -orbital is
- [NCERT 1978I]
- (a) Pyramidal
- (b) Spherical
- (c) Tetrahedral
- (d) Dumb-bell shaped
- When 3d orbital is complete, the new electron will enter 71.

[EAMCET 1980; MP PMT 1995]

- (a) 4p -orbital
- (b) 4f-orbital
- (c) 4s-orbital
- (d) 4d -orbital

- In a potassium atom, electronic energy levels are in the following order [EAMCET 1979; DPMT 1991]
 - (a) 4s > 3d
- (b) 4s > 4p
- (c) 4s < 3d
- (d) 4s < 3p
- Fe (atomic number = 26) atom has the electronic 73. arrangement [NCERT 1974; MNR 1980]
 - (a) 2, 8, 8, 8
- (b) 2, 8, 16
- (c) 2, 8,14, 2
- (d) 2, 8, 12, 4
- Cu^{2+} will have the following electronic configuration 74. [MP PMT 1985]
 - (a) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}$
 - (b) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^9, 4s^1$
 - (c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^9$
 - (d) $1s^2.2s^22p^6.3s^23p^63d^{10}.4s^1$
- **75** Which one is the electronic configuration of Fe^{+2}


[MA DT Bihar 1982; AIIMS 1989]

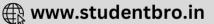
- (a) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^6$
- (b) $1s^2.2s^22p^6.3s^23p^63d^4.4s^2$
- (c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^1$
- (d) None of these
- **76.** How many electrons can be fit into the orbitals that comprise the 3^{nd} quantum shell n = 3

[MP PMT 1986, 87; Orissa JEE 1997]

(a) 2

- (b) 8
- (c) 18
- (d) 32
- Which element is represented by the following electronic configuration [MP PMT 1987]

- (a) Nitrogen
- (b) Oxygen
- (c) Fluorine
- (d) Neon
- If the value of azimuthal quantum number is 3, the possible values of magnetic quantum number would be


[MP PMT 1987; RPMT 1999; AFMC 2002; KCET 2002]

- (a) 0, 1, 2, 3
- (b) 0, -1, -2, -3
- (c) $0, \pm 1, \pm 2, \pm 3$
- (d) ± 1 , ± 2 , ± 3
- Krypton ($_{36}$ Kr) has the electronic configuration ($_{18}$ Ar) $4s^2$, $3d^{10}$, $4p^6$. The 37^{th} electron will go into which one of the following sub-levels

[CBSE PMT 1989; CPMT 1989; EAMCET 1991]

- (a) 4f
- (b) 4d
- (c) 3p
- (d) 5s
- If an electron has spin quantum number of $+\frac{1}{2}$ and a magnetic quantum number of -1, it cannot be presented [CBSE PMT 1989; UPSEAT 2001] in an

(a) d-orbital	(b) f-orbital		(c) Cs^+ (d) K^+
(c) p -orbital	(d) s-orbital	93.	The order of filling of electrons in the orbitals of an atom will be
The azimuthal quantum			(a) $3d, 4s, 4p, 4d, 5s$ (b) $4s, 3d, 4p, 5s, 4d$
(a) Size	[BHU 1987, 95] (b) Shape		(c) $5s,4p,3d,4d,5s$ (d) $3d,4p,4s,4d,5s$
(c) Orientation	(d) Spin	0.4	The quantum number which may be designated by s, p, d
	onsthat can be accommodated	94.	and f instead of number is BHU 1980]
in all the orbitals having p	rincipal quantum number 2 and		
	er 1 is [CPMT 1971, 89, 91]		(a) n (b) l (c) m_l (d) m_s
(a) 2	(b) 4		
(c) 6	(d) 8	95.	Which of the following represents the correct sets of the four quantum numbers of a 4d electron
Electronic configuration of			[MNR 1992; UPSEAT 2001; J&KCET 2005]
(a) $1s^2, 2s^2 2p^2$	(b) $1s^2, 2s^2 2p^3$		1
(c) $1s^2, 2s^2$	(d) $1s^2, 2s^2 2p^6$		(a) $4,3,2,\frac{1}{2}$ (b) $4,2,1,0$
	tween a $2p$ and a $3p$ orbital		(c) $4,3,-2,+\frac{1}{2}$ (d) $4,2,1,-\frac{1}{2}$
regarding	[BHU 1981]	_	2
(a) Shape	(b) Size	96.	Which of the following statements is not correct for an
(c) Energy	(d) Value of n		electron that has the quantum numbers $n = 4$ and $m = 2$ [MNR 1993]
The electronic configurations			_ ,,,,,
	995; BHU 2001; BCECE 2005]		(a) The electron may have the quantum number $s = +\frac{1}{2}$
(a) $[Ne]3s^23p^63d^4,4s^2$	(b) $[Ne]3s^23p^63d^5,4s^1$		(b) The electron may have the quantum number $l=2$
(c) $[Ne]3s^23p^6,4s^24p^4$	(d) $[Ne]3s^23p^63d^1,4s^24p^3$		(c) The electron may have the quantum number $l=3$
The shape of p -orbital is	[MP PMT 1993]		(d) The electron may have the quantum number $l = 0.1.2.3$
(a) Elliptical	(b) Spherical		l = 0,1,2,3 The set of quantum numbers not applies his few an
(c) Dumb-bell	(d) Complex geometrical	9 7•	The set of quantum numbers not applicable for an electron in an atom is [MNR 1994]
	tion (outermost) of Mn^{+2} ion		(a) $n = 1, l = 1, m_l = 1, m_s = +1/2$
(atomic number of $Mn =$			(b) $n = 1, l = 0, m_l = 0, m_s = +1/2$
() 2.5 (0	[MP PET 1993]		(c) $n=1, l=0, m_l=0, m_s=-1/2$
(a) $3d^5, 4s^0$	(b) $3d^4, 4s^1$		(d) $n = 2, l = 0, m_l = 0, m_s = +1/2$
(c) $3d^3, 4s^2$	(d) $3d^2, 4s^2 4p^2$		
	nber represents [CPMT 1991]	98.	Correct configuration of Fe^{+3} [26] is [CPMT 1994; BHU 1995; KCET 1992]
(a) Shape of an orbital(b) Distance of electron f	nom nu alou a		(a) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5$
(c) Number of electrons			(b) $1s^2, 2s^2sp^6, 3s^23p^63d^3, 4s^2$
(d) Number of orbitals in			(c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^6, 4s^2$
	ntum number has a value of		(d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^1$
l = 1, the shape of the orbi			
(a) Unsymmetrical(c) Dumb-bell	(b) Spherically symmetrical(d) Complicated	99.	Azimuthal quantum number for last electron of Na atom is
	e accommodated in a sub-shell		[BHU 1995]
for which $n = 3, l = 1$	[CBSE PMT 1990]		(a) 1 (b) 2
(a) 8	(b) 6		(c) 3 (d) o
(c) 18	(d) 32	100	A 3p orbital has [IIT 1995]
	number $l=3$, the maximum		(a) Two spherical nodes(b) Two non-spherical nodes
number of electrons will l	e [CBSE PMT 1991;		(c) One spherical and one non-spherical nodes
	PMT 2002; CBSE PMT 2002]		(d) One spherical and two non-spherical nodes
(a) 2	(b) 6 (d) 14	101.	All electrons on the $4p$ sub-shell must be characterized
(c) 0 An ion has 18 electrons i	(a) 14 n the outermost shell, it is		by the quantum number(s) [MP PET 1996]
An ion has to electrons i	[CBSE PMT 1990]		(a) $n = 4, m = 0, s = \pm \frac{1}{2}$ (b) $l = 1$
	2,77-1		2

(b) *Th*⁴⁺

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

(a) *Cu*⁺

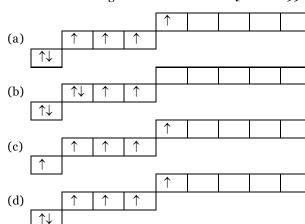
(c)
$$l = 0, s = \pm \frac{1}{2}$$

(d)
$$s = \pm \frac{1}{2}$$

- **102.** The electronic configuration of the element of atomic number 27 is
 - (a) $1s^2$, $2s^22p^6$, $3s^23p^6$, $4s(\uparrow\downarrow)4p(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)5s(\uparrow)$
 - (b) $1s^2$, $2s^22p^6$, $3s^23p^63d$ $(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)$, 4s $(\uparrow\downarrow)4p$ (\uparrow)
 - (c) $1s^2$, $2s^22p^6$, $3s^23p^6$, $3d(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)$, $4s(\uparrow)$
 - (d) $1s^2$, $2s^22p^6$, $3s^23p^6$, $3d(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow)(\uparrow)(\uparrow)(\uparrow)4s(\uparrow\downarrow)$
- **103.** When the value of the principal quantum number n is 3, the permitted values of the azimuthal quantum numbers l and the magnetic quantum numbers m, are

	_	-	
l			m
0			0
(a) 1			+1,0,-1
2			+ 2,+1, 0, -1,-2
1			1
(b) 2			+2,1,-1

- (b) 2 +2,1,-13 +3,+2,1,-2,-30 0
- (c) 1 1, 2, 3 +3, +2, 1, -2, -3 1 0, 1
- (d) 2 0, 1, 2 0, 1, 2, 3
- 104. The number of possible spatial orientations of an electron in an atom is given by its
 - (a) Spin quantum number
 - (b) Spin angular momentum
 - (c) Magnetic quantum number
 - (d) Orbital angular momentum
- 105. Which of the following sets of orbitals may degenerate
 - (a) $2s, 2p_x, 2p_y$
- (b) $3s, 3p_x, 3d_{xy}$
- (c) 1s, 2s, 3s
- (d) $2p_x, 2p_y, 2p_z$
- **106.** The set of quantum numbers n = 3, l = 0, m = 0, s = -1/2 belongs to the element
 - (a) *Mg*
- (b) *Na*
- (c) Ne
- (d) F
- 107. An electron has principal quantum number 3. The number of its (i) sub-shells and (ii) orbitals would be respectively


[MP PET 1997]

- (a) 3 and 5
- (b) 3 and 7
- (c) 3 and 9
- (d) 2 and 5
- **108.** What is the electronic configuration of $Cu^{2+}(Z=29)$ of least position [MP PET/PMT 1998; MP PET 2001]
 - (a) $[Ar]4s^13d^8$
- (b) $[Ar]4s^23d^{10}4p^1$
- (c) $[Ar]4s^13d^{10}$
- (d) $[Ar]3d^9$
- **109.** The correct electronic configuration of Ti(Z = 22) atom is [MP PMT 1999]
 - (a) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$
 - (b) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$

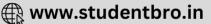
- (c) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$
- (d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^3$
- 110. Which of the following configuration is correct for iron [CBSE PMT 1999]
 - (a) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$
 - (b) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5$
 - (c) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^7$
 - (d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$
- 111. Which of the following set of quantum numbers belong to highest energy [CPMT 1999]
 - (a) $n = 4, l = 0, m = 0, s = +\frac{1}{2}$
 - (b) $n = 3, l = 0, m = 0, s = +\frac{1}{2}$
 - (c) $n = 3, l = 1, m = 1, s = +\frac{1}{2}$
 - (d) $n = 3, l = 2, m = 1, s = +\frac{1}{2}$
- 112. Which quantum number will determine the shape of the subshell [CPMT 1999; Pb. PMT 1998]
 - (a) Principal quantum number
 - (b) Azimuthal quantum number
 - (c) Magnetic quantum number
 - (d) Spin quantum number
- 113. For the n = 2 energy level, how many orbitals of all kinds are possible [Bihar CEE 1995]
 - (a) 2

(b) 3

- (c) 4
- (d) 5
- **114.** Which one is in the ground state
- [DPMT 1996]

115. When the principal quantum number (n = 3), the possible values of azimuthal quantum number (l) is

[Bihar MEE 1996; KCET 2000]


- (a) 0, 1, 2, 3
- (b) 0, 1, 2
- (c) 2, -1, 0, 1, 2
- (d) 1, 2, 3
- (e) 0, 1
- **116.** Which statement is not correct for n = 5, m = 3

[CPMT 1996]

- (a) l = 4
- (b) $l = 0, 1, 3; s = +\frac{1}{2}$

(c)	1 =	3

(d) All are correct

117. $1s^2 2s^2 2p^6 3s^1$ shows configuration of

[CPMT 1996]

- (a) Al^{3+} in ground state (b) Ne in excited state
- - (c) Mg^+ in excited state (d) None of these
- **118.** Five valence electrons of p^{15} are labelled as

AB
3s

X	Y	Z
	3 p	

If the spin quantum of B and Z is $+\frac{1}{2}$, the group of electrons with three of the quantum number same are [JIPMER 1997]

- (a) AB, XYZ, BY
- (b) *AB*
- (c) XYZ, AZ
- (d) AB, XYZ

119. Electronic configuration of Sc^{21} is

[BHU 1997]

(a)
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$$

(b)
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^2$$

(c)
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^3$$

(d)
$$1s^2 2s^2 2p^6 3s^2 3p^2 4s^2 3d^2$$

- **120.** If n+l=6, then total possible number of subshells would be [RPMT 1997]
 - (a) 3

(b) 4

- (c) 2
- (d) 5
- 121. An electron having the quantum numbers n=4, l=3, m=0, $s=-\frac{1}{2}$ would be in the orbital

[Orissa JEE 1997]

- (a) 3s
- (b) 3p
- (c) 4d
- (d) 4f
- 122. Which of the following sets of quantum numbers is not [Orissa JEE 1997]

(a)
$$n = 1, l = 0, m = 0, s = +\frac{1}{2}$$

(b)
$$n = 1, l = 1, m = 0, s = -\frac{1}{2}$$

(c)
$$n = 2, l = 1, m = 1, s = +\frac{1}{2}$$

(d)
$$n = 2, l = 1, m = 0, s = -\frac{1}{2}$$

- 123. For which of the following sets of four quantum numbers, an electron will have the highest energy [CBSE PMT 1994]
- (a) 3
- +1/2
- (b) 4
- +1/2
- (c) 4
- -1/2
- (d) 5
- -1/2
- 124. The electronic configuration of gadolinium (atomic no.
 - (a) $[Xe]4s^85d^96s^2$
- (b) $[Xe]4s^75d^16s^2$

- (c) $[Xe]4s^35d^56s^2$
- (d) $[Xe]4f^65d^26s^2$
- 125. An e^- has magnetic quantum number as -3, what is its principal quantum number [BHU 1998]
 - (a) 1

(b) 2

(c) 3

- (d) 4
- 126. The number of quantum numbers required to describe an [CET Pune 1998] electron in an atom completely is
 - (a) 1

(b) 2

(c) 3

- (d) 4
- **127.** The electronic configuration $1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$

[A FMC 1997; Pb. PMT 1999; CBSE PMT 2001; AIIMS 2001]

- (a) Oxygen
- (b) Nitrogen
- (c) Hydrogen
- (d) Fluorine
- 128. Which one of the following set of quantum numbers is not possible for 4p electron [EAMCET 1998]

(a)
$$n = 4, l = 1, m = -1, s = +\frac{1}{2}$$

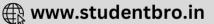
(b)
$$n = 4, l = 1, m = 0, s = +\frac{1}{2}$$

(c)
$$n = 4, l = 1, m = 2, s = +\frac{1}{2}$$

(d)
$$n = 4, l = 1, m = -1, s = +\frac{1}{2}$$

- 129. Which of the following orbital is not possible [RPMT 1999]
 - (a) 3f
- (b) 4f
- (c) 5f
- (d) 6 f
- 130. Which set of quantum numbers for an electron of an atom [RPMT; DCE 1999] is not possible
 - (a) n = 1, l = 0, m = 0, s = +1/2
 - (b) n = 1, l = 1, m = 1, s = +1/2
 - (c) n = 1, l = 0, m = 0, s = -1/2
 - (d) n = 2, l = 1, m = -1, s = +1/2
- **131.** Electronic configuration of ferric ion is [RPET 2000]
 - (a) $[Ar]3d^5$
- (b) $[Ar]3d^7$
- (c) $[Ar]3d^3$
- (d) $[Ar] 3d^8$
- 132. What is the maximum number of electrons which can be accommodated in an atom in which the highest principal quantum number value is 4 [MP PMT 2000]
 - (a) 10
- (b) 18
- (c) 32
- (d) 54
- 133. Which of the following electronic configurations is not possible

[CPMT 2000]


- (a) $1s^2 2s^2$
- (b) $1s^2 2s^2 2p^6$
- (c) $3d^{10}4s^24p^2$
- (d) $1s^2 2s^2 2p^2 3s^1$
- 134. The electronic configuration of an element is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$. This represents its

[IIT Screening 2000]

- (a) Excited state
- (b) Ground state
- (c) Cationic form
- (d) Anionic form
- 135. Which of the following set of quantum numbers is [CBSE-FMET 1997]

[AIIMS 2001]

- (a) n = 3; l = 2; m = 2 and $s = +\frac{1}{2}$
- (b) n = 3; l = 4; m = 0 and $s = -\frac{1}{2}$
- (c) $n=4; l=0; m=2 \text{ and } s=+\frac{1}{2}$
- (d) n = 4; l = 4; m = 3 and $s = +\frac{1}{2}$
- 136. Which of the following set of quantum number is not valid

[A IIMS 2001]

- (a) n = 1, l = 2
- (b) 3 = 2, m = 1
- (c) m = 3, l = 0
- (d) 3 = 4, l = 2
- 137. Which one pair of atoms or ions will have same configuration [JIPMER 2001]
 - (a) F^+ and Ne
- (b) Li^+ and He
- (c) Cl^- and Ar
- (d) Na and K
- 138. Which of the following sets of quantum number is not [MP PET 2001]
 - (a) $n = 3; l = +2; m = 0; s = +\frac{1}{2}$
 - (b) $n = 3; l = 0; m = 0; s = -\frac{1}{2}$
 - (c) $n = 3; l = 0; m = -1; s = +\frac{1}{2}$
 - (d) $n = 3; l = 1; m = 0; s = -\frac{1}{2}$
- 139. Which of the following set of quantum numbers is correct for the 19th electron of chromium [DCE 2001]

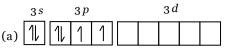
	n	l	m	s
(a)	3	О	0	1/2
(b)	3	2	- 2	1/2
(c)	4	О	0	1/2

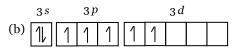
- 140. When the value of azimuthal quantum number is 3, magnetic quantum number can have values[DPMT 2001]
 - (a) + 1, 0, -1

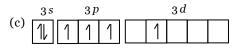
(d)

- (b) +2, +1, 0, -1, -2
- (c) -3, -2, -1, -0, +1, +2, +3
- (d) + 1, -1
- **141.** The quantum numbers n = 2, l = 1 represent [AFMC 2002]
 - (a) 1s orbital
- (b) 2s orbital

1/2


- (c) 2p orbital
- (d) 3d orbital
- 142. The magnetic quantum number of valence electron of sodium (Na) is [RPMT 2002]
 - (a) 3


(b) 2


(c) 1

- (d) o
- 143. Azimuthal quantum number defines [A IIMS 2002]
 - (a) e/m ratio of electron
 - (b) Spin of electron
 - (c) Angular momentum of electron
 - (d) Magnetic momentum of electron
- 144. Quantum numbers of an atom can be defined on the basis [AIIMS 2002]

- (a) Hund's rule
- (b) Aufbau's principle
- (c) Pauli's exclusion principle
- (d) Heisenberg's uncertainty principle
- 145. Which of the following has maximum energy [AIIMS 2002]

- **146.** The ers for *d*-orbital is given by
 - (a) 2

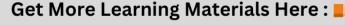
- (b) $0, \pm 1, \pm 2$
- (c) 0, 1, 2
- (d) 5
- **147.** The outer electronic structure $3s^23p^5$ is possessed by

[Pb. PMT 2002; Pb. CET 2001]

- (a) Cl
- (b) O
- (c) Ar
- (d) Br
- 148. Which of the following set of quantum number is not possible [Pb. PMT 2002]

	n	l	m_{1}	m_2
(a)	3	2	1	+ 1/2
(b)	3	2	1	-1/2
(c)	3	2	1	0
(d)	5	2	- 1	+ 1/2

- **149.** The configuration $1s^2$, $2s^22p^5$, $3s^1$ shows [**Pb. PMT 2002**]
 - (a) Excited state of O_2^-
 - (b) Excited state of neon
 - (c) Excited state of fluorine
 - (d) Ground state of fluorine atom
- **150.** The quantum number 'm' of a free gaseous atom is associated with [AIIMS 2003]
 - (a) The effective volume of the orbital
 - (b) The shape of the orbital
 - (c) The spatial orientation of the orbital
 - (d) The energy of the orbital in the absence of a magnetic field
- **151.** Correct statement is


[BHU 2003]

- (a) $K = 4s^1$, $Cr = 3d^4 4s^2$, $Cu = 3d^{10} 4s^2$
- (b) $K = 4s^2$, $Cr = 3d^4 4s^2$, $Cu = 3d^{10} 4s^2$
- (c) $K = 4s^2$, $Cr = 3d^5 4s^1$, $Cu = 3d^{10} 4s^2$
- (d) $K = 4s^1$, $Cr = 3d^5 4s^1$, $Cu = 3d^{10} 4s^1$
- **152.** Number of orbitats in *h* sub-shell is [BHU 2003]
 - (a) 11

CLICK HERE

(b) 15

(c) 17 (d) 19 153. Electronic configuration

 $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^1$ represents [CPMT 2003]

(a) Ground state (b) Excited state

(c) Anionic state

(d) All of these

154. Which of the following sets is possible for quantum numbers

[RPET 2003]

(a) n = 4, l = 3, m = -2, s = 0

(b)
$$n = 4, l = 4, m = +2, s = -\frac{1}{2}$$

(c)
$$n = 4, l = 4, m = -2, s = +\frac{1}{2}$$

(d)
$$n = 4, l = 3, m = -2, s = +\frac{1}{2}$$

155. For principle quantum number n = 4 the total number of orbitals having l = 3[A IIMS 2004]

(a) 3

(b) 7

(c) 5

(d) 9

156. The number of 2p electrons having spin quantum number s = -1/2 are [KCET 2004]

(a) 6

(b) o

(c) 2

(d) 3

157. Which of the following sets of quantum numbers is correct for an electron in 4f orbital [AIEEE 2004]

(a)
$$n = 4, l = 3, m = +1, s = +\frac{1}{2}$$

(b)
$$n = 4, l = 4, m = -4, s = -\frac{1}{2}$$

(c)
$$n = 4, l = 3, m = +4, s = +\frac{1}{2}$$

(d)
$$n = 3, l = 2, m = -2, s = +\frac{1}{2}$$

158. Consider the ground state of (Z = 24). The numbers of electrons with the azimuthal quantum numbers, l=1 and 2 are, respectively [AIEEE 2004]

(a) 16 and 4

(b) 12 and 5

(c) 12 and 4

(d) 16 and 5

159. The four quantum numbers of the valence electron of potassium are

(a) 4, 1, 0 and $\frac{1}{2}$

(b) 4, 0, 1 and $\frac{1}{2}$

(c) 4, 0, 0 and $+\frac{1}{2}$ (d) 4, 1, 1 and $\frac{1}{2}$

160. Which of the following electronic configuration is not possible according to Hund's rule

(a) $1s^2 2s^2$

(b) $1s^2 2s^1$

(c) $1s^2 2s^2 2p_x^1 2p_y^1 2p_x^1$

(d) $1s^2 2s^2 2p_x^2$

(e) $1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$

161. The ground state term symbol for an electronic state is [UPSEAT 2004] governed by

(a) Heisenberg's principle

(b) Hund's rule

(c) Aufbau principle

(d) Pauli exclusion principle

162. The electronic configuration of element with atomic number 24 is [Pb. CET 2004]

(a) $1s^2.2s^22p^6.3s^23p^63d^4.4s^2$

(b) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}$

(c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^6$

(d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5 4s^1$

163. The maximum number of electrons in p -orbital with [Pb. CET 2003] n = 5, m = 1 is

(a) 6

(b) 2

(c) 14

(d) 10

164. Number of two electron can have the same values of [UPSEAT 2004] quantum num bers

(a) One

(b) Two

(c) Three

(d) Four

165. The number of orbitals present in the shell with n = 4 is

[UPSEAT 2004]

(a) 16

(b) 8

(c) 18

(d) 32

166. Which of the following electronic configuration is not possible

[MHCET 2003]

(a) $1s^2 2s^2$

(b) $1s^2, 2s^2 2p^6$

(c) $[Ar]3d^{10},4s^24p^2$

(d) $1s^2, 2s^2 2p^2, 3s^1$

167. p_x orbital can accommodate

[MNR 1990; IIT 1983; MADT Bihar 1995; BCECE 2005]

(a) 4 electrons

(b) 6 electrons

(c) 2 electrons with parallel spins

(d) 2 electrons with opposite spins

168. The maximum number of electrons that can be accommodated in 'f' sub shell is

[CPMT 1983, 84; MP PET/PMT 1988; BITS 1988]

(a) 2

(b) 8

(c) 32

(d) 14

169. The number of electrons which can be accommodated in an orbital is [DPMT 1981; AFMC 1988]

(a) One

(b) Two

(c) Three

(d) Four

170. The number of electrons in the atom which has 20 protons in the nucleus[CPMT 1981, 93; CBSE PMT 1989]

(a) 20

(b) 10

[KefalaPMT 2004]

(d) 40

171. The maximum number of electrons accommodated in 5f[MP PET 1996] orbitals are

(a) 5

(b) 10


(c) 14

(d) 18

172. The maximum number of electrons in an atom with l=2and n = 3 is [MP PET/PMT 1998]

	(a) 2	(b) 6		(a) 6	(b) 4
	(c) 12	(d) 10		(c) 3	(d) 1
73.	The configuration $1s^2 2s^2 2$	$p^5 3s^1$ shows [AIIMS 1997]	185.	$3d^{10} 4s^0$ electronic confi	iguration exhibits by
	(a) Ground state of fluori	ne atom		(a) Zn^{++}	(b) Cu^{++}
	(b) Excited state of fluori	ne atom		(c) Cd ⁺⁺	(d) Hg^{++}
	(c) Excited state of neon	atom	186.		etal ions will have maximum
	(d) Excited state of ion O			number of unpaired electr	
74.	For sodium atom the numb	per of electrons with $m = 0$ will		(a) Fe^{+2}	(b) <i>CO</i> +2
, -	be	[RPMT 1999]		(c) Ni^{+2}	(d) Mn^{+2}
	(a) 2	(b) 7	187.		will have highest number of
	(c) 9	(d) 8		unpaired electrons	
¹ 75•		hat can be accommodated in		(a) <i>Cu</i> ⁺	(b) Fe^{2+}
	dz^2 orbital is 2002]	[Kurukshetra CEE		(c) Fe^{3+}	(d) Co^{2+}
	(a) 10	(b) 1	188.	The maximum number present in <i>d</i> orbitals are	of unpaired electron can be
	(c) 4	(d) 2		(a) 1	(b) 3
76.	Number of unpaired elect	$\frac{1}{3}$ rons in $\frac{1}{3}$ $\frac{1}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ is		(c) 5	(d) 7
., 0.		982; MP PMT 1987; BHU 1987;	189.	The molecule having on	
		CET Pune 1998; AIIMS 2000]		(a) NO	(b) <i>CO</i>
	(a) 2	(b) o		(c) <i>CN</i> ⁻	(d) O ₂
	(c) 3	(d) 1	190.		p or d -orbitals is spherically
177•		electrons in an atom of atomic		symmetric. Point out the	e species which has spherical [NCERT 1983]
	number 29 is	[CPMT 1984, 93]		(a) <i>Na</i>	(b) C
	(a) 1 (c) 4	(b) 3 (d) 2		(c) Cl ⁻	(d) Fe
			191.		aving atomic number 14 should
178.	The number of unpaired			have	[AMU 1984]
	(a) 4	MT 1991; MP PMT 1996, 2002] (b) 2			on (b) Two unpaired electrons
	(a) 4 (c) 0	(d) 1		-	trons (d)Four unpaired electrons
179.		of electrons that can be	192.		of K shell, 8 electrons in L shell ll. The number of s -electrons
	accommodated in a 3d si			present in that element is	[CPMT 1989]
	(a) 2	(b) 10		(a) 6	(b) 5
80	(c) 6 The maximum number of e	(d) 14 lectrons which each sub-shell		(c) 7	(d) 10
	can occupy is	[Pb. CET 1989]	193.	The number of unpaired excited state is	d electrons in carbon atom in [MNR 1987]
	(a) $2n^2$	(b) 2n		(a) One	(b) Two
	(c) $2(2l+1)$	(d) $(2l+1)$		(c) Three	(d) Four
81.		trons in the ground state of	194.	Maximum number of ele	ectrons present in 'N' shell is
	beryllium atom is			() .	[EAMCET 1984]
	(a) 2 (c) 0	(b) 1 (d) All the above		(a) 18 (c) 2	(b) 32 (d) 8
00		ons are present in Ni^{2+} cation			• •
82.	(atomic number = 28)	[IIT 1981; MNR 1984;	195.	The number of d electron $Fe = 26$) is not equal to the	ns in Fe^{+2} (atomic number of at of the [MNR 1993]
		PMT 1995; Kerala PMT 2003]		(a) p -electrons in Ne (
	(a) o	(b) 2		(b) s -electrons in Mg (·
	(c) 4	(d) 6		(c) d-electrons in Fe	At. No. – 12)
83.	The number of unpaired el	ectrons in an O_2 molecule is			
		[MNR 1983]		(d) p -electrons in Cl^- (
	(a) o	(b) 1	196.		a configuration $[Ar]3d^4$ in its
_	(c) 2	(d) 3			mic number is[EAMCET 1990]
84.	The number of unpaired electronic number = 24) is	ectrons in a chromic ion Cr^{3+} [MNR 1986; CPMT 1992]		(a) 25 (c) 22	(b) 26 (d) 19
	(atomic number = 24)18	[MINK 1900; CFM11 1992]		(0) 22	(4) 19

197.	The total number of orbitals of bromine are	electrons present in all the p (MP PET 1994)		(c) Pauli's exclusion p(d) Uncertainty prince	
	(a) Five	(b) Eighteen			ciple 1's principle, which of the thre
	(c) Seventeen	(d) Thirty five	200		filled with electrons first[MADT]
198.		g has the maximum number of [IIT 1996]		(a) 4d	imed with electrons in signature.
	(a) Mg^{2+}	(b) Ti^{3+}		(b) 5 <i>p</i>	
	_			(c) $5s$	
	(c) V^{3+}	(d) Fe^{2+}			e filled simultaneously
199.	Which of the following	has more unpaired d-electrons [CBSE PMT 1999]		 The energy of an electron (a) Greater than that 	on of $2p_y$ orbital is [AMU 1984 t of $2p_y$ orbital
	(a) Zn ⁺	(b) Fe^{2+}		(b) Less than that of 2	
	(c) N^{3+}	(d) <i>Cu</i> ⁺			
200.	Maximum electrons in a			(c) Equal to that of 2.	
	(a) 2	(b) 10		(d) Same as that of 2	*
	(c) 6	(d) 14	210.		ing principles/rules limits th
001		ed electrons in $Fe^{3+}(Z=26)$ are			lectrons in an orbital to two[CBSE
201.	The number of unpair			(a) Aufbau principle	
	(a) 5	[KCET 2000]		(b) Pauli's exclusion p	-
	(a) 5	` '		(c) Hund's rule of ma	2 0
000	(c) 3	(d) 4 ectrons are present in cobalt [Co]		(d) Heisenberg's unce	
202.	metal	[RPMT 2002]		then to higher energy following	o to lower energy levels first and levels according to which of th
	(a) 2	(b) 3 (d) 7		ionowing	[BHU 1990; MP PMT 1993
202	(c) 4 The number of unpair	ed electrons in nitrogen is		(a) Aufbau principle	£ 3334, 336
203.	The number of unpair	[Pb. CET 2002]		(b) Pauli's exclusion p	orinciple
	(a) 1	(b) 3	•	(c) Hund's rule of ma	ximum multiplicity
	(c) 2	(d) None of these		(d) Heisenberg's unce	ertainty principle
204.	Which of the following		212.		als in a particular shell is in th
	(a) $2p$	(b) $3p$		order	F. 777.0
	-	(d) $4d$			[AFMC 1990
005	(c) 2s Pauli's evaluation princip	(a) 4 <i>a</i> le states that [CPMT 1983, 84]	ı	(a) s	(b) $s > p > d > f$
205.		n contains no negative charge		(c) $p < d < f < s$	(d) $f > d > s > p$
		circular orbits around the nucleus	213.	Aufbau principle is not	satisfied by [MP PMT 1997
		orbitals of lowest energy	,	(a) Cr and Cl	(b) Cu and Ag
		mnumbers of two electrons in an		(c) Cr and Mg	(d) Cu and Na
	atom cannot be eq			Which of the following	explains the sequence of filling th
206.	-	in an atom, which one of the	_	electrons in different sh	
	following statements is	correct [AIIMS 1983]		(a) Hund's rule	(b) Octet rule
		rincipal electron energy levels		(c) Aufbau principle	(d) All of these
	energy levels and co	ll energy lev el can hav e four sub ntains a maximum of eight electron	5	electronic configuration	
1 .		vel can have maximum of 32		(a) $1s^2 2s^2 2p^6$	(b) $1s^2 3p^3 3s^2$
electi		-lli+ - bi-b		(c) $1s^2 3s^2 3p^6$	(d) $1s^2 2s^2 3s^2$
		levelis at a higher energy than	216.	Following Hund's ru	le which element contains si
00=	the $3d$ sub-energy The statements			unpaired electron	[RPET 2000
207.		[AIIMS 1982] of orbitals of equal energy, it is		(a) Fe	(b) <i>Co</i>
		rable to assign electrons to empty		(c) Ni	(d) <i>Cr</i>
		an pair them into a particular		Electron enters the su	ab-shell for which $(n+l)$ value in
	orbital.	1		minimum. This is enu	ınciated as
		ons are placed in two different			[RPMT 2000
		lower if the spins are parallel.		(a) Hund's rule	
	are valid for			(b) Aufbau principle	
	(a) Aufbau principle(b) Hund's rule			(c) Heisenberg uncer(d) Pauli's exclusion p	

218. The atomic orbitals are progressively filled in order of increasing energy. This principle is called as

[MP PET 2001]

- (a) Hund's rule
- (b) Aufbau principle
- (c) Exclusion principle
- (d) de-Broglie rule
- The correct order of increasing energy of atomic orbitals

[MP PET 2002]

- (a) 5p < 4f < 6s < 5d
- (b) 5p < 6s < 4f < 5d
- (c) 4f < 5p < 5d < 6s
- (d) 5p < 5d < 4f < 6s
- **220.** The orbital with maximum energy is
 - [CPMT 2002]

- (a) 3d
- (b) 5p

- (c) 4s
- (d) 6d
- **221.** *p*-orbitals of an atom in presence of magnetic field are [Pb. PMT 2002]

 - (a) Two fold degenerate (b) Non degenerate
 - (c) Three fold degenerate (d) None of these
- **222.** Orbital angular momentum for a *d*-electron is [MP PET 2003]

- 223. Number of nodal centres for 2s orbital [RPET 2003]
 - (a) 1

(b) o

(c) 4

- (d) 3
- **224.** The orbital angular momentum of an electron in 2s-
- (c) $\sqrt{2} \frac{h}{2\pi}$
- (d) Zero
- 225. The maximum number of electrons present in an orbit l=3, is [Pb. PMT 2004]
 - (a) 6

- (b) 8
- (c) 10
- (d) 14
- **226.** Number of unpaired electrons in Mn^{4+} is [DPMT 2005]
 - (a) 3

(b) 5

- (c) 6
- (d) 4
- 227. Which of the following sequence is correct as per Aufbau principle [DPMT 2005]
 - (a) 3s < 3d < 4s < 4p
- (b) 1s < 2p < 4s < 3d
- (c) 2s < 5s < 4p < 5d
- (d) 2s < 2p < 3d < 3p
- 228. Electronic configuration of deuterium atom is

[J&K CET 2005]

- (a) $1s^{1}$
- (b) $2s^2$
- (c) $2s^1$
- (d) $1s^2$

Critical Thinking Objective Questions

Which of the following atoms and ions are isoelectronic i.e. have the same number of electrons with the neon atom

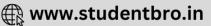
[NCERT 1978]

- (a) F^{-}
- (b) Oxygen atom
- (c) Mg
- (d) N^{-1}
- Atoms consists of protons, neutrons and electrons. If the mass of neutrons and electrons were made half and two times respectively to their actual masses, then the atomic mass of C^{12}
 - (a) Will remain approximately the same
 - (b) Will become approximately two times
 - (c) Will remain approximately half
 - (d) Will be reduced by 25%
- The increasing order (lowest first) for the values of e/m3. (charge/mass) for [IIT 1984]
 - (a) e, p, n, α
- (b) n, p, e, α
- (c) n, p, α, e
- (d) n, α, p, e
- The electronic configuration of a dipositive metal M^{2+} is 4. 2, 8, 14 and its atomic weight is 56 a.m.u. The number of neutrons in its nuclei would be

[MNR 1984, 89; Kerala PMT 1999]

- (a) 30
- (b) 32
- (c) 34
- (d) 42
- The ratio of the energy of a photon of 2000Å wavelength radiation to that of 4000Å radiation is

[IIT 1986; DCE 2000; JIPMER 2000]


- (a) 1/4
- (b) 4
- [MP_CPET/2004]
- (d) 2
- Discovery of the nucleus of an atom was due to the experiment carried out by [CPMT 1983; MP PET 1983]
 - (a) Bohr
- (b) Mosley
- (c) Rutherford
- (d) Thomson
- In a Bohr's model of atom when an electron jumps from n=1 to n=3, how much energy will be emitted or absorbed [CBSE PMT 1996]
 - (a) $2.15 \times 10^{-11} erg$
- (b) $0.1911 \times 10^{-10} erg$
- (c) $2.389 \times 10^{-12} erg$
- (d) $0.239 \times 10^{-10} erg$
- 8. The nucleus of an atom can be assumed to be spherical. The radius of the nucleus of mass number A is given by $1.25 \times 10^{-13} \times A^{1/3}$ cm Radius of atom is one Å. If the mass number is 64, then the fraction of the atomic volume that is occupied by the nucleus is [NCERT 1983]
 - (a) 1.0×10^{-3}
- (b) 5.0×10^{-5}
- (c) 2.5×10^{-2}
- (d) 1.25×10^{-13}
- The energy of an electron in the first Bohr orbit of Q. H atom is -13.6eV. The possible energy value(s) of the excited state(s) for electrons in Bohr orbits to hydrogen is(are)

[IIT 1998; Orissa JEE 2005]

- (a) -3.4eV
- (b) -4.2eV
- (c) -6.8eV
- (d) +6.8eV
- The energy of the electron in the first orbit of He^+ is -871.6×10^{-20} J. The energy of the electron in the first orbit of hydrogen would be [Roorkee Qualifying 1998]
 - (a) $-871.6 \times 10^{-20} J$
- (b) $-435.8 \times 10^{-20} J$

- (c) $-217.9 \times 10^{-20} J$
- (d) $-108.9 \times 10^{-20} J$
- 11. The total number of valence electrons in $4.2 \, gm$ of N_3^- ion is (N_A is the Avogadro's number) [CBSE PMT 1994]
 - (a) $1.6N_A$
- (b) $3.2N_A$
- (c) $2.1N_A$
- (d) $4.2N_A$
- 12. The Bohr orbit radius for the hydrogen atom (n = 1) is approximately 0.530 Å. The radius for the first excited state (n = 2) orbit is **[CBSE PMT 1998; BHU 1999]**
 - (a) 0.13Å
- (b) 1.06Å
- (c) 4.77Å
- (d) 2.12Å
- The frequency of a wave of light is $12 \times 10^{14} \, s^{-1}$. The wave number associated with this light is **[Pb. PMT 1999]**
 - (a) $5 \times 10^{-7} m$
- (b) $4 \times 10^{-8} \, cm^{-1}$
- (c) $2 \times 10^{-7} m^{-1}$
- (d) $4 \times 10^4 \, cm^{-1}$
- 14. The series limit for Balmer series of H-spectra is

[AMU (Engg.) 1999]

- (a) 3800
- (b) 4200
- (c) 3646
- (d) 4000
- 15. The ionization energy of hydrogen atom is $-13.6\,eV$. The energy required to excite the electron in a hydrogen atom from the ground state to the first excited state is (Avogadro's constant = 6.022×10^{23}) [BHU 1999]
 - (a) $1.69 \times 10^{-20} J$
- (b) $1.69 \times 10^{-23} J$
- (c) $1.69 \times 10^{23} J$
- (d) $1.69 \times 10^{25} J$
- **16.** The energy required to dislodge electron from excited isolated *H*-atom, $IE_1 = 13.6 \text{ eV}$ is **[DCE 2000]**
 - (a) $=13.6 \, eV$
- (b) $>13.6 \, eV$
- (c) < 13.6 and > 3.4 eV
- (d) $\leq 3.4 \, eV$
- 17. The number of nodal planes in a p_x is

[IIT Screening 2000]

- (a) One
- (b) Two
- (c) Three
- (d) Zero
- **18.** The third line in Balmer series corresponds to an electronic transition between which Bohr's orbits in hydrogen

[MP PMT 2001]

- (a) $5 \rightarrow 3$
- (b) $5 \rightarrow 2$
- (c) $4 \rightarrow 3$
- (d) $4 \rightarrow 2$
- 19. Which of the following has maximum number of unpaired electron (atomic number of Fe 26) [MP PMT 2001]
 - (a) Fe

- (b) Fe (II)
- (c) Fe (III)
- (d) Fe (IV)
- **20.** The frequency of one of the lines in Paschen series of hydrogen atom is 2.340×10^{11} Hz. The quantum number n_2 which produces this transition is **[DPMT 2001]**
 - (a) 6

(b) 5

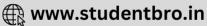
(c) 4

(d) 3

21. Which of the following electron transition in a hydrogen atom will require the largest amount of energy

[UPSEAT 1999, 2000, 01]

- (a) From n = 1 to n = 2
- (b) From n = 2 to n = 3
- (c) From $n = \infty$ to n = 1
- (d) From n=3 to n=5
- 22. In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inter-orbit jumps of the electron for Bohr orbits in an atom of hydrogen [AIEEE 2003]
 - (a) $3 \rightarrow 2$
- (b) $5 \rightarrow 2$
- (c) $4 \rightarrow 1$
- (d) $2 \rightarrow 5$
- **23.** The value of Planck's constant is 6.63×10^{-34} Js. The velocity of light is 3.0×10^8 ms⁻¹. Which value is closest to the wavelength in nanometres of a quantum of light with frequency of 8×10^{15} s⁻¹ [CBSE PMT 2003]
 - (a) 3×10^7
- (b) 2×10^{-25}
- (c) 5×10^{-18}
- (d) 4×10^{1}
- 24. As electron moves away from the nucleus, its potential energy [UPSEAT 2003]
 - (a) Increases
- (b) Decreases
- (c) Remains constant
- (d) None of these


Read the assertion and reason carefully to mark the correct option out of the options given below:

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- **1.** Assertion: The position of an electron can be determined exactly with the help of an electron microscope.
 - Reason: The product of uncertainty in the measurement of its momentum and the uncertainty in the measurement of the position cannot be less than a finite limit.

[NDA 1999]

- **2.** Assertion : A spectral line will be seen for a $2p_x 2p_y$ transition.
 - $\sum_{x} \sum_{y} \sum_{y$
 - Reason : Energy is released in the form of wave of light when the electron drops from $2p_x 2p_y$ orbital. [AIIMS 1996]
 - Assertion: The cation energy of an electron is largely determined by its principal quantum
 - Reason : The principal quantum number n is a measure of the most probable distance of finding the electron around the nucleus.

[AIIMS 1996]

Nuclide 30 Al_{13} is less stable than 40 Ca_{20} Assertion :

Nuclides having odd number of protons Reason

and neutrons are generally unstable

The atoms of different elements having Assertion : 5. same mass number but different atomic

number are known as isobars

Reason The sum of protons and neutrons, in the isobars is always different [AIIMS 2000]

Two electrons in an atom can have the 6. Assertion :

Reason

Reason

10.

11.

Assertion:

same values of four quantum numbers. Two electrons in an atom can be present

in the same shell, sub-shell and orbital

and have the same spin [AIIMS 2001]

Assertion : The value of n for a line in Balmer series 7. of hy drogen spectrum having the highest

wave length is 4 and 6.

For Balmer series of hydrogen spectrum, Reason

the value $n_1 = 2$ and $n_2 = 3, 4, 5$.

[AIIMS 1992]

8. Assertion : Absorption spectrum conists of some bright lines separated by dark spaces.

> Reason Emission spectrum consists of dark lines.

[A IIMS 2002]

A resonance hybrid is always more stable Assertion: 9. than any of its canonical structures.

This stability is due to delocalization of

electrons. [AIIMS 1999]

Cathode rays do not travel in straight

Cathode rays penetrate through thick Reason

sheets [AIIMS 1996]

Electrons revolving around the nucleus Assertion :

do not fall into the nucleus because of

centrifugal force.

Reason Revolving electrons are planetary

electrons.

[AIIMS 1994]

Threshold frequency is a characteristic 12. Assertion:

for a metal.

Threshold frequency is a maximum Reason

> frequency required for the ejection of electron from the metal surface.

Assertion: The radius of the first orbit of hydrogen 13.

atom is 0.529Å.

for circular Reason each

 $(r_n) = 0.529 \text{Å} (n^2/Z)$, where n = 1,2,3

and Z = atomic number.

Assertion: $3d_{2}$ orbital is spherically symmetrical. 14.

> Reason $3d_{z^2}$ orbital is the only d-orbital which

> > is spherical in shape.

Spin quantum number can have the value Assertion : 15.

+1/2 or -1/2.

(+) sign here signifies the wave function. Reason

Total number of orbitals associated with 16. Assertion :

principal quantum number n = 3 is 6.

Reason Number of orbitals in a shell equals to

Assertion: Energy of the orbitals increases as

1s < 2s = 2p < 3s = 3p < 3d < 4s = 4p

=4d=4f<....

Energy of the electron depends Reason

completely on principal quantum

Splitting of the spectral lines in the 18. Assertion:

presence of magnetic field is known as

stark effect.

Reason Line spectrum is simplest for hydrogen

atom.

Assertion: Thomson's atomic model is known as

'raisin pudding' model.

The atom is visualized as a pudding of

Reason positive charge with electrons (raisins)

embedded in it.

Assertion: Atomic orbital in an atom is designated 20.

by n, l, m_l and m_s .

These are helpful in designating electron present in an orbital.

Assertion: The transition of electrons $n_3 \rightarrow n_2$ in H

atom will emit greater energy than

 $n_4 \rightarrow n_3$.

Reason

Reason n_3 and n_2 are closer to nucleus tan n_4 .

Assertion: Cathode rays are a stream of α -particles.

> Reason They are generated under high pressure

and high voltage.

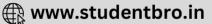
In case of isoelectronic ions the ionic size 23. Assertion:

increases with the increase in atomic

number.

Reason The greater the attraction of nucleus,

greater is the ionic radius.


nswers

Discovery and Properties of anode, cathode rays neutron and Nuclear structure

1	d	2	а	3	С	4	С	5	b
6	а	7	b	8	а	9	d	10	С
11	b	12	d	13	b	14	а	15	b
16	b	17	С	18	С	19	С	20	b
21	а	22	d	23	С	24	b	25	d
26	С	27	b	28	d	29	С	30	а
31	b	32	d	33	b	34	С	35	С
36	а	37	b	38	а	39	d	40	С
41	С								

Atomic number, Mass number, Atomic species

1	b	2	а	3	b	4	b	5	а
6	а	7	С	8	b	9	С	10	b
11	b	12	С	13	b	14	С	15	С
16	С	17	С	18	а	19	С	20	а
21	С	22	b	23	С	24	d	25	b
26	b	27	а	28	а	29	С	30	b
31	С	32	d	33	d	34	С	35	С
36	С	37	С	38	b	39	d	40	С
41	b	42	С	43	а	44	С	45	b
46	С	47	d	48	а	49	С	50	С
51	а	52	С	53	b	54	а	55	С
56	а	57	d	58	С	59	а	60	а
61	d	62	b	63	а	64	С	65	b
66	а	67	С	68	а	69	d	70	d
71	С	72	а	73	b	74	d		

Atomic models and Planck's quantum theory

1	С	2	а	3	b	4	b	5	d
6	b	7	С	8	b	9	С	10	а
11	b	12	a	13	d	14	b	15	b
16	C	17	a	18	c	19	a	20	d
21	d	22	C	23	d	24	d	25	C
26	a	27	С	28	b	29	c	30	a
31	b	32	С	33	d	34	b	35	b
									- 1
36	a	37	C	38	С	39	С	40	a
41	C	42	d	43	d	44	a	45	d
46	b	47	а	48	С	49	d	50	а
51	а	52	С	53	d	54	С	55	b
56	b	57	b	58	а	59	b	60	С
61	С	62	b	63	С	64	С	65	b
66	b	67	С	68	a	69	b	70	d
71	а	72	d	73	а	74	С	75	d
76	b	77	а	78	а	79	С	80	а
81	а								

Dual nature of electron

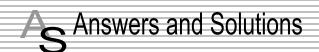
1	С	2	а	3	а	4	b	5	С
6	b	7	d	8	a	9	d	10	d
11	С	12	С	13	b	14	b	15	b
16	С	17	С	18	С	19	b	20	а
21	d								

Uncertainty principle and Schrodinger wave equation

1	b	2	b	3	а	4	С	5	С
6	С	7	b	8	d	9	d	10	а
11	а	12	С	13	a	14	b	15	d
16	b	17	а	18	С	19	С	20	b

Quantum number, Electronic configuration and Shape of orbitals

1	С	2	а	3	b	4	d	5	С
6	С	7	С	8	а	9	а	10	а
11	С	12	С	13	а	14	а	15	d
16	С	17	С	18	d	19	b	20	С
21	С	22	а	23	С	24	d	25	С
26	С	27	b	28	d	29	е	30	b
31	d	32	а	33	С	34	d	35	d
36	С	37	b	38	b	39	d	40	С
41	d	42	С	43	С	44	а	45	а
46	а	47	b	48	С	49	С	50	b
51	С	52	b	53	b	54	b	55	С
56	С	57	b	58	е	59	С	60	С
61	d	62	d	63	d	64	С	65	b
66	d	67	С	68	d	69	С	70	b
71	а	72	С	73	С	74	С	75	а
76	С	77	С	78	С	79	d	80	d
81	b	82	С	83	а	84	а	85	b
86	С	87	а	88	b	89	С	90	b
91	d	92	а	93	b	94	b	95	d
96	d	97	а	98	а	99	d	100	С
101	b	102	d	103	а	104	С	105	d
106	а	107	С	108	d	109	а	110	d
111	d	112	b	113	С	114	b	115	b
116	а	117	С	118	b	119	а	120	а
121	d	122	b	123	b	124	b	125	d
126	d	127	b	128	С	129	a	130	b
131	а	132	С	133	d	134	b	135	а
136	а	137	С	138	С	139	С	140	С
141	С	142	d	143	С	144	С	145	b
146	d	147	а	148	С	149	b	150	С
151	d	152	а	153	а	154	d	155	b
156	d	157	а	158	b	159	С	160	d
161	С	162	d	163	b	164	С	165	а
166	d	167	d	168	d	169	b	170	а
171	С	172	d	173	С	174	b	175	d
176	С	177	а	178	b	179	b	180	С


181	С	182	b	183	С	184	С	185	а
186	d	187	С	188	С	189	а	190	С
191	b	192	а	193	d	194	b	195	d
196	а	197	С	198	d	199	b	200	b
201	а	202	b	203	b	204	С	205	d
206	b	207	b	208	С	209	d	210	b
211	а	212	а	213	b	214	С	215	а
216	d	217	b	218	b	219	b	220	d
221	b	222	b	223	а	224	d	225	d
226	а	227	b	228	а				

Critical Thinking Questions

1	а	2	d	3	d	4	а	5	d
6	С	7	b	8	d	9	а	10	С
11	а	12	d	13	d	14	С	15	b
16	d	17	а	18	b	19	С	20	b
21	а	22	а	23	d	24	а		

Assertion & Reason

1	d	2	d	3	а	4	а	5	С
6	d	7	е	8	d	9	а	10	е
11	b	12	С	13	а	14	d	15	С
16	d	17	С	18	е	19	а	20	е
21	b	22	d	23	d				

Discovery and Properties of anode, cathode rays neutron and Nuclear structure

- (d) Neutrons and protons in the nucleus and electrons in the extranuclear region.
- 2. (a) It consists of proton and neutron and these are also known as nucleones.
- 3. (c) Radius of nucleus $\approx 10^{-15} m$.
- **4.** (c) Positive ions are formed from the neutral atom by the loss of electrons.
- **5.** (b) The β -ray particle constitute electrons.
- **6.** (a) James Chadwick discovered neutron $\binom{n}{n}$.
- 7. (b) Charge/mass for

$$n = 0, \alpha = \frac{2}{4}, p = \frac{1}{1}$$
 and $e = \frac{1}{1/1837}$

9. (d) The density of neutrons is of the order $10^{11} kg / cc$.

- **10.** (c) This is because chargeless particles do not undergo any deflection in electric or magnetic field.
- 11. (b) Neutron and proton found in nucleus.
- 13. (b) Cathode rays are made up of negatively charged particles (electrons) which are deflected by both the electric and magnetic fields.
- **15.** (b) Mass of neutron is greater than that of proton, meson and electron.
 - Mass of neutron = mass of proton + mass of electron
- 16. (b) Proton is 1837 (approx 1800) times heavier than an electron. Penetration power $\propto \frac{1}{\text{mass}}$
- **18.** (c) Nucleus of helium is $_2He^4$ mean 2 neutrons and 2 protons.
- **19.** (c) Proton is the nucleus of H atom (H atom devoid of its electron).
- **20.** (b) Cathode rays are made up of negatively charged particles (electrons, e^-)
- **26.** (c) Size of nucleus is measured in *Fermi* (1 Fermi = $10^{-15} m$).
- **27.** (b) A molecule of an element is a incorrect statement. The correct statement is "an element of a molecule".

- **29.** (c) Proton is represented by p having charge +1 discovered in 1988 by Goldstein.
- 31. (b) The nature of anode rays depends upon the nature of residual gas.
- 32. (d) H^+ (proton) will have very large hydration energy due to its very small ionic size 1
 - Hydration energy $\propto \frac{1}{\text{Size}}$
- **33.** (b) Mass of a proton = $1.673 \times 10^{-24} g$
 - .. Mass of one mole of proton

$$=9.1\times10^{-24}\times6.02\times10^{23}=10.07\times10^{-1}=1.008$$
 g

Mass of a electron = 9.1×10^{-28} g

:. Mass of one mole of electron

$$=9.1\times10^{-28}\times6.02\times10^{23}=54.78\times10^{-5}\,g=0.55\,mg\;.$$

35. (c) One mole of electron = $6.023 \times 10^{\circ}$ electron Mass of one electron = $9.1 \times 10^{\circ}$ gm Mass of one mole of electrons

=
$$6.023 \times 10^{23} \times 9.1 \times 10^{-28} gm = 5.48 \times 10^{-4} gm$$

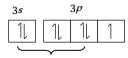
= $5.48 \times 10^{-4} \times 1000 mg = 0.548 gm \approx 0.55 mg$.

- = 5.48 × 10 × 1000 mg = 0.548 $gm \approx 0.55 mg$. **36.** (a) Charge on proton = +1 unit, charge on α particle = +2 units, 2:
- 1.
- **37.** (b) $m_p / m_e \approx 1837 \approx 1.8 \times 10^3$.
- **38.** (a) Splitting of signals is caused by protons attached to adjacent carbon provided these are not equivalent to the absorbing proton.
- **39.** (d) Nucleus consists of proton and neutron both are called as nucleon.
- **40.** (c) Positron $(+1e^0)$ has the same mass as that of an electron $(-1e^0)$.
- **41.** (c) Electron $\frac{1}{1837}$ time lighter than proton so their mass ratio will be 1:1837

Atomic number, Mass number, Atomic species

- **1.** (b) The number of electrons in an atom is equal to its atomic number *i.e.* number of protons.
- 2. (a) No. of protons = Atomic no. = 25 and no. of neutron = 55 25 = 30.
- **3.** (b) No. of neutrons = mass number no. of protons. = W N.
- **4.** (b) $_{30}Zn^{70}$, Zn^{2+} has No. of Neutrons = 70 30 = 40.
- **5.** (a) Na^+ and Ne are isoelectronic which contain 10 electrons.
- **6.** (a) One molecule of CO_2 have 22 electrons.
- 7. (c) Cl and Cl^- differs in number of electrons. Cl has $17e^-$ while Cl^- has $18e^-$.
- **8.** (b) CO and CN^- are isoelectronic. CO = 6 + 8 = 14 and $CN^- = 6 + 7 + 1 = 14$.
- **9.** (c) Mass of an atom is due to nucleus (neutron + proton).
- 10. (b) Atomic number is defined as the number of protons in the nucleus.
- **11.** (b) $_{26}X^{56}$ A = P + N = Z + N = E + NN = A - E = 56 - 26 = 30

- 12. (c) Most probable radius = a_i / Z where $a_i = 52.9$ pm. For helium ion, Z = 2. $r_{..} = \frac{52.9}{2} = 26.45 \text{ pm.}$
- 13. (b) Four unpaired electron are present in the Fe^{2+} ion $Fe^{2+}_{26} = [Ar]3d^6, 4s^0$
- **14.** (c) Na^+ has 10 electron and Li^+ has 2 electron so these are different number of electron from each other.
- 16. (c) $P_{15} = 2, 8, 5$
- 17. (c) $_{8}O = 1s^{2}2s^{2}2p^{4}$
- **18.** (a) $_{35}Br^{80} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^5$ A = 80, Z = 35, N = ? N = A - Z = 80 - 35 = 45atomic number (Proton) is 35 and no. of neutron is 45.
- **19.** (c) $\frac{16}{8}O^{--}$ have more electrons than neutron p = 8, e = 10, n = 8.
- **20.** (a) $_6A^{12}$ and $_6X^{13}$ both are isotopes but have different no. of neutrons. $_6A^{12}$, For A have p=6, e=6 and n=6 and $_6X^{13}$, For B have p=6, e=6 and n=7
- 21. (c) P = 20, mass no. (A) = 40 N = A P = 40 20 = 20P = N = 20.
- **22.** (b) Electrons in $Na^+ = 11 1 = 10$ Electrons in $Mg^{2+} = 12 2 = 10$
- **23.** (c) $_{20}Ca^{40}$ has 20 proton, 20 neutron.
- **24.** (d) $CH_3^+ = 6 + 3 1 = 8e^-,$ $H_3O^+ = 3 + 8 1 = 10e^-,$ $NH_3 = 7 + 3 = 10e^-, \quad CH_3^- = 6 + 3 + 1 = 10e^-$
- **25.** (b) $-CONH_2 = 6 + 8 + 7 + 2 + 1$ (from other atom to form covalent bond) = 24.
- **26.** (b) Complete $E.C. = [Ar]^{18} 3d^{10} 4s^2 4p^6$. Hence no. of $e^- = \text{no. of protons} = 36 = Z$.
- **28.** (a) $K^+ = 1s^2 2s^2 2p^6 3s^2 3p^6$ $Cl^- = 1s^2 2s^2 2p^6 3s^2 3p^6$.
- **29.** (c) Mass no. \approx At. Wt. Mass no. = no. of protons + no. of neutrons At. no. = no. of protons.
- **30.** (b) $N_2O = 14 + 8 = 22$ $CO_2 = 6 + 16 = 22$.
- 31. (c) Neutron in ${}^{12}_{6}C = 6$, Neutrons in ${}^{28}_{14}Si = 14$ Ratio = 6: 14 = 3: 7.
- 33. (d) $N_7 = 1s^2 2s^2 2p^3$ $N^+ = 1s^2 2s^2 2p^2$



 $C = 1s^2 \ 2s^2 2p^2.$

- **34.** (c) O = C = O, linear structure 180° angle Cl Hg Cl, linear structure 180° angle.
- **35.** (c) $H^- = 1s^2$ and $He^+ = 1s^2$.
- $\begin{tabular}{lll} \bf 36. & (c) & \mbox{In the nucleus of an atom only proton and neutrons are present.} \end{tabular}$
- 37. (c) Cu_{29}^{63} Number of neutrons = atomic mass atomic number = 63 29 = 34.
- **38.** (b) 21 Protons and 24 Neutrons are present in nucleus and element is *Sc.*
- **40.** (c) $_{7}X^{14}$, n=14-7=7
- **42.** (c) Cl^- have 17 proton, 18 neutron and 18 electron.
- **43.** (a) Number of unpaired electrons in inert gas is zero because they have full filled orbitals.
- **44.** (c) Electrons and Protons are same in neutral atom.
- **48.** (d) No. of proton and no. of electron = $18[Ar_{18}^{36}]$ and No. of neutron = 20 Mass number = P + N = 18 + 20 = 38.
- **49.** (c) In Xe_{89}^{231} number of protons and electrons is 89 and No. of neutrons = A Z = 231 89 = 142.
- **51.** (a) NO_2^- and O_3 are isostere. The number of atoms in these (=3) and number of electrons (24) are same.
- **52.** (c) Number of electrons in nitrogen = 7 and number of electron is oxygen = 8 we know that formula of nitrate ion is NO_3^- we also know that number of electron = $(1 \times \text{Number of electrons in nitrogen})$

 $+ \left(3 \times number \ of \ electrons \ in \ oxygen\right) + 1$ = $(1 \times 7) + (3 \times 8) + 1 = 32$.

- 53. (b) Atomicity = $\frac{\text{Molecular mass}}{\text{Atomic mass}} = \frac{256}{32} = 8 = S_8$.
- **54.** (a) In case of N^{3-} , p = 7 and c = 10
- **55.** (c) Chlorine $Cl_{17} = [Ne]$

- **56.** (a) Bromine Three electron pair consists of outer most electronic configuration $[Ar] 3d^{10} 4s^2 4p^5.$
- 57. (d) $Na^{+} = 1s^{2} 2s^{2} 2p^{6}$ $Mg = 1s^{2} 2s^{2} 2p^{6}$ $O^{2-} = 1s^{2} 2s^{2} 2p^{6}$ $Cl^{-} = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6}$
- **60.** (a) $Ar_{18}^{40}=$ atomic number 18 and no. of Neutron in case of Ar_{22} Neutron = Atomic mass Atomic number =40-18=22
- **61.** (d) Nucleus of tritium contain $[H_1^3]$ p=1, e=1, n=2

- **62.** (b) N^{3-}, F^- and Na^+ (These three ions have $e^-=10$, hence they are isoelectronic)
- **63.** (a) NO_3^- and CO_3^{2-} consist of same electron and show same isostructural.
- **64.** (c) Atomic number of chlorine 17 and in Cl^- ion total no. of electron =18.
- **65.** (b) Tritium (H_1^3) has one proton and two neutron.
- **67.** (c) $X_{35} = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4s^2 4p^5$

Total no. of e^- is all p-orbitals = 6 + 6 + 5 = 17.

- **68.** (a) Since its nucleus contain 9 proton so its. atomic number is 9 and its electronic configuration is 2, 7. So it require one more electron to complete its octet. Hence its valency is 1.
- **69.** (d) K_2S formed by K^+ and S^{2-} ion. We know that atomic number of K is 19 and in K^+ ion its atomic number would be 18 similarly atomic number of S is 16 and in form S^{2-} ion its atomic number would be 18 so the K^+ and S^{2-} are isoelectronic with each other in K_2S .
- **70.** (d) $_{20}Ca = 2, 8, 8, 2$ $Ca^{2+} = 2, 8, 8$

Hence, Ca^{2+} has 8 electrons each in outermost and penultimate shell.

- **71.** (c) Atomic no. of C = 6 so the number of protons in the nucleus = 6
- **72.** (a) No. of P = Z = 7; No. of electrons in $N^{3-} = 7 + 3 = 10$.
- **73.** (b) Heavy hydrogen is ${}_{1}^{2}D$.Number of neutrons = 1
- **74.** (d) Atomic number is always whole number.

Atomic models and Planck's quantum theory

- 2. (a) The central part consisting whole of the positive charge and most of the mass caused by nucleus, is extremely small in size compared to the size of the atom.
- 3. (b) Electrons in an atom occupy the extra nuclear region.
 - (b) According to the Bohr model atoms or ions contain one electron.
- (d) The nucleus occupies much smaller volume compared to the volume of the atom.
- 7. (c) α -particles pass through because most part of the atom is empty.
- **8.** (b) An electron jumps from L to K shell energy is released.
- (c) Neutron is a chargeless particles, so it does not deflected by electric or magnetic field.
- (a) Energy is always absorbed or emitted in whole number or multiples of quantum.
- 11. (b) Both He and Li^+ contain 2 electrons each.
- 18. (c) During the experimental verification of de-Broglie equation, Davisson and Germer confirmed wave nature of electron.
- (a) Increases due to absorption of energy and it shows absorption spectra.
- **20.** (d) Rutherford α -Scattering experiment.
- **21.** (d) It represents Heisenberg's uncertainty principle.
- **23.** (d) $\frac{E_4}{E_2} = \frac{2^2}{4^2} = \frac{4}{16} = \frac{1}{4}$; $E_4 = \frac{E_2}{4} = \frac{-328}{4} = -82 \text{ kJ/mol.}$
- **27.** (c) When $c = v \times \lambda$ than $\lambda = \frac{c}{v} = \frac{3 \times 10^8}{2 \times 10^6} = 1.5 \times 10^2 m$

- **28.** (b) According to quantum theory of radiation, a hot body emits radiant energy not continuously but discontinuously in the form of small packets of energy called quanta or photons.
- **30.** (a) $p = \frac{h}{\lambda} = \frac{6.6 \times 10^{-34}}{2.2 \times 10^{-11}} = 3 \times 10^{-23} \, kgms^{-1}$
- **34.** (b) Bohr's radius = $\frac{n^2h^2}{4\pi^2me^2z}$. Which is a positive quantity.
- **40.** (a) Gold used by Rutherford in scatting experiment.
- **41.** (c) $\Delta E = E_3 E_2 = 13.6 \left[\frac{1}{(2)^2} \frac{1}{(3)^2} \right] = 1.9 \text{ eV}$
- **42.** (d) $R = R_0 (= 1.4 \times 10^{-13} \text{ cm}) \times A^{1/3}$
- **43.** (d) $\left(\frac{q}{m}\right)_{\alpha} = \frac{1}{2} \left(\frac{q}{m}\right)_{\alpha} = \frac{1}{2} \times 9.6 \times 10^7 = 4.8 \times 10^7 \, \text{C kg}^{-1}$
- **44.** (a) According to Hydrogen spectrum series.
- **45.** (d) The electron can move only in these circular orbits where the angular momentum is a whole number multiple of $\frac{h}{2\pi}$ or it is quantised.
- **46.** (b) Generally electron moving in orbits according to Bohr's principle.
- **47.** (a) According to the planck's law that energy of a photon is directly proportional to its frequency *i.e.* E = h v
- **49.** (d) Bohr's radius of the hydrogen atom $r = \frac{n^2 \times 0.529 \text{\AA}}{z} \text{; where } z = \text{Atomic number,}$

n = Number of orbitals

- 51. (a) $E = -\frac{2.172 \times 10^{-18}}{n^2} = \frac{-2.172 \times 10^{-18}}{2^2}$
- 52. (c) $\Delta E = \frac{hc}{\lambda}$ or $\lambda = \frac{hc}{\Delta E}$ $= \frac{6.64 \times 10^{-34} \times 3 \times 10^{8}}{3 \times 10^{-8}} = 6.64 \times 10^{-8} \text{ Å}$
- 53. (d) $r_n = r_1 \times n^2$ $r_3 = 0.53 \times 3^2 = 0.53 \times 9 = 4.77 \text{ Å}$
- **54.** (c) According to Rutherford an atom consists of nucleus which is small in size but carries the entire mass (P+N).
- **55.** (b) Wavelength of spectral line emitted is inversely proportional to energy $\lambda \propto \frac{1}{E}$.
- **56.** (b) $E \propto \frac{1}{\lambda}$; $E_1 = \frac{1}{8000}$; $E_2 = \frac{1}{16000}$ $\frac{E_1}{E_2} = \frac{16000}{8000} = 2 \implies E_1 = 2E_2$
- **58.** (a) $v = \frac{c}{\lambda} = \frac{3 \times 10^8 \text{ ms}^{-1}}{600 \times 10^{-9} \text{ m}} = 5.0 \times 10^{14} \text{ Hz}.$
- **59.** (b) $E = \frac{-13.6}{n^2} eV = \frac{-13.6}{2^2} = \frac{-13.6}{4} = -3.40 \ eV$
- **65.** (b) Bohr radius $=\frac{r_2}{r_1}=\frac{(2)^2}{(1)^2}=4$.
- **66.** (b) $v = \frac{1}{\lambda} = R \left[\frac{1}{n_1^2} \frac{1}{n_2^2} \right] = 109678 \left[\frac{1}{1} \frac{1}{4} \right] = 82258.5$ $\lambda = 1.21567 \times 10^{-5} cm \text{ or } \lambda = 12.1567 \times 10^{-6} cm$

- $= 12.1567 \times 10^{-8} m$ $c \qquad 3 \times 10^{8}$
- $v = \frac{c}{\lambda} = \frac{3 \times 10^8}{12.567 \times 10^{-8}} = 24.66 \times 10^{14} \, Hz$.
- **67.** (c) We know that $\lambda = \frac{h}{mv}$; $\therefore m = \frac{h}{m\lambda}$

The velocity of photon (v) = $3 \times 10^8 \, m \, \mathrm{sec}^{-1}$

 $\lambda = 1.54 \times 10^{-8} \, cm = 1.54 \times 10^{-10} \, meter$

$$\therefore m = \frac{6.626 \times 10^{-34} Js}{1.54 \times 10^{-10} m \times 3 \times 10^8 m \text{ sec}^{-1}}$$

 $=1.4285\times10^{-32} kg$.

- **68.** (a) The spliting of spectral line by the magnetic field is called Zeeman effect.
- **69.** (b) $r \propto n^2$ (excited state n = 2) $r = 4a_0$
- **70.** (d) $r_n \propto n^2 : A_n \propto n^4$ $\frac{A_2}{A_1} = \frac{n_2^4}{n_1^4} = \frac{2^4}{1^4} = \frac{16}{1} = 16 : 1$
- **71.** (a) It will take $\frac{4\pi^2 mr^2}{nh}$
- **72.** (d) $r_H = 0.529 \frac{n^2}{z} \mathring{A}$ For hydrogen; n = 1 and z = 1 therefore

 $r_H=0.529 \mathring{A}$ For $Be^{3+}:Z=4$ and n=2 Therefore

$$r_{Be^{3+}} = \frac{0.529 \times 2^2}{4} = 0.529 \text{Å}.$$

73. (a) $E_{\text{ionisation}} = E_{\infty} - E_n = \frac{13.6Z_{eff}^2}{n^2} eV$

$$= \left[\frac{13.6Z^2}{n_2^2} - \frac{13.6Z^2}{n_1^2} \right]$$

$$E = h v = \frac{13.6 \times 1^2}{(1)^2} - \frac{13.6 \times 1^2}{(4)^2}; \ h v = 13.6 - 0.85$$

 $h = 6.625 \times 10^{-34}$

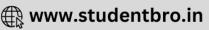
$$v = \frac{13.6 - 0.85}{6.625 \times 10^{-34}} \times 1.6 \times 10^{-19} = 3.08 \times 10^{15} \, \text{s}^{-1} \,.$$

74. (c) $\frac{1}{\lambda} = R \left| \frac{1}{n_1^2} - \frac{1}{n_2^2} \right|$

$$\frac{1}{\lambda} = 1.097 \times 10^7 \, m^{-1} \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right]$$

 $\lambda = 91 \times 10^{-9} m$

We know $10^{-9} = 1 nm$ So $\lambda = 91 nm$


75. (d) $r \propto n^2$

For 1 orbit $\gamma = 1$

For III orbit = $\gamma \propto 3^2 = 9$

So it will 9 γ .

76. (b) Bohr suggest a formulae to calculate the radius and energy of each orbit and gave the following formulae

$$r_n = \frac{n^2 h^2}{4\pi^2 kme^4 Z}$$

Where except $\,n^2$, all other unit are constant so $\,r_{\!n}\,\propto n^2$.

77. (a) Energy of an electron $E = \frac{-E_0}{n^2}$

For energy level (n = 2)

$$E = -\frac{13.6}{(2)^2} = \frac{-13.6}{4} = -3.4 \,\text{eV}$$
.

78. (a) Energy of ground stage $(E_0) = -13.6 eV$ and energy level = 5

$$E_5 = \frac{-13.6}{n^2} eV = \frac{-13.6}{5^2} = \frac{-13.6}{25} = -0.54 eV.$$

- 79. (c) Positive charge of an atom is present in nucleus.
- **81.** (a) For $n_4 \to n_1$, greater transition, greater the energy difference, lesser will be the wavelength.

Dual nature of electron

- 1. (c) According to de-Broglie equation $\lambda = \frac{h}{mv}$ or $\frac{h}{p}$ or $\frac{h}{mc}$
- **4.** (b) $\lambda = \frac{h}{p} \text{ or } \frac{h}{mv} \text{ or } \frac{h}{mc}$ de-Broglie equation.
- 5. (c) Emission spectra of different λ accounts for quantisation of energy.
- **6.** (b) According to de-Broglie equation $\lambda = \frac{h}{mv}, \ p = mv, \ \lambda = \frac{h}{p}, \ \lambda = \frac{h}{mc}$
- **7.** (d) According to de-Broglie $\left(\lambda = \frac{h}{mv}\right)$.
- 8. (a) $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{10^{-3} \times 100} = 6.63 \times 10^{-33} \, m$
- **9.** (d) $\lambda = \frac{h}{mv}$. For same velocity $\lambda \propto \frac{1}{m}$.

 SO_2 molecule has least wavelength because their molecular mass is high.

- **10.** (d) de-Broglie equation is $\lambda = \frac{h}{p}$.
- 11. (c) Formula for de-Broglie wavelength is

$$\lambda = \frac{h}{p}$$
 or $\lambda = \frac{h}{mv} \Rightarrow eV = \frac{1}{2}mv^2$ or $v = \sqrt{\frac{2eV}{m}}$

$$\lambda = \frac{h}{\sqrt{2meV}} = \frac{6.62 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 2.8 \times 10^{-23}}}$$

 $\lambda = 9.28 \times 10^{-8} \, meter$

- 12. (c) $\lambda = \frac{h}{p}, p = mv$
 - $\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-34}}{9.1 \times 10^{-31} \times 1.2 \times 10^5}$

 $\lambda = 6.626 \times 10^{-9} \, m$

13. (b) Mass of the particle $(m) = 10^{-6} kg$ and velocity of the particle $(v) = 10 ms^{-1}$

$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{10^{-6} \times 10} = 6.63 \times 10^{-29} \, m$$

15. (b) According to de-Broglie

$$\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-20} \, erg. \sec}{\frac{2}{6.023 \times 10^{23}} \times 5 \times 10^4 \, cm \, / \sec}$$

$$= \frac{6.62 \times 10^{-27} \times 6.023 \times 10^{23}}{2 \times 5 \times 10^{4}} cm = 4 \times 10^{-8} cm = 4 \text{ Å}.$$

- 16. (c) $\lambda = \frac{h}{mv} = \frac{6.625 \times 10^{-34}}{0.2 \, kg \times \frac{5}{60 \times 60 \, ms^{-1}}} = 10^{-30} \, m \, .$
- 17. (c) From de Broglie equation

$$\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-34}}{0.5 \times 100} = 1.32 \times 10^{-35} m.$$

18. (c) Dual nature of particle was proposed by de-broglie who gave the following equation for the wavelength.

$$\lambda = \frac{h}{mv}$$

19. (b) One percent of the speed of light is

$$v = \left(\frac{1}{100}\right) (3.00 \times 10^8 \, ms^{-1}) = 3.00 \times 10^6 \, ms^{-1}$$

Momentum of the electron (p) = m v

$$= (9.11 \times 10^{-31} kg)(3.00 \times 10^6 ms^{-1})$$

$$= 2.73 \times 10^{-24} kg \ ms^{-1}$$

The de-broglie wavelength of this electron is

$$\lambda = \frac{h}{p} = \frac{6.626 \times 10^{-34}}{2.73 \times 10^{-24} \, kgms^{-1}}$$

$$\lambda = 2.424 \times 10^{-10} m$$
.

- **20.** (a) We know that the correct relationship between wavelength and momentum is $\lambda = \frac{h}{p}$. Which is given by de-Broglie.
- 21. (d) De-broglie equation applies to all the material object in motion.

Uncertainty principle and Schrodinger wave equation

- 1. (b) The uncertainty principle was enunciated by Heisenberg.
- **2.** (b) According to uncertainty principle, the product of uncertainties of the position and momentum, is $\Delta x \times \Delta p \ge h/4\pi$.
- **5.** (c) $\Delta x \times \Delta p = \frac{h}{4\pi}$ is not the correct relation. But correct

Heisenberg's uncertainty equation is $\Delta x \times \Delta p \geq \frac{h}{4\pi}$.

- 7. (b) According to the Heisenberg's uncertainty principle momentum and exact position of an electron can not be determined simultaneously.
- **8.** (d) $\Delta x. \Delta p \ge \frac{h}{4\pi}$, if $\Delta x = 0$ then $\Delta p = \infty$.
- **12.** (c) According to $\Delta x \times \Delta p = \frac{h}{4\pi}$

$$\Delta x = \frac{h}{\Delta p \times 4\pi} = \frac{6.62 \times 10^{-34}}{1 \times 10^{-5} \times 4 \times 3.14} = 5.27 \times 10^{-30} \, m \,.$$

13. (a) Uncertainty of moving bullet velocity

$$\Delta v = \frac{h}{4\pi \times m \times \Delta v} = \frac{6.625 \times 10^{-34}}{4 \times 3.14 \times .01 \times 10^{-5}}$$
$$= 5.2 \times 10^{-28} \, m/sec.$$

- **14.** (b) $\Delta x . \Delta p \ge \frac{h}{4\pi}$ This equation shows Heisenberg's uncertainty principle. According to this principle the product of uncertainty in position and momentum of particle is greater than equal to $\frac{h}{4\pi}$.
- **15.** (d) Spin quantum number does not related with Schrödinger equation because they always show +1/2, -1/2 value.
- **16.** (b) According to $\Delta x \times m \times \Delta v = \frac{h}{4\pi}$; $\Delta v = \frac{h}{\Delta x \times m \times 4\pi}$

$$= \frac{6.6 \times 10^{-34}}{10^{-5} \times 0.25 \times 3.14 \times 4} = 2.1 \times 10^{-29} \ m / s$$

17. (a) Uncertainity in position $\Delta x = \frac{h}{4\pi \times \Delta p}$

$$= \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times (1 \times 10^{-5})} = 5.28 \times 10^{-30} \, m \,.$$

18. (c) Given that mass of electron = $9.1 \times 10^{-31} kg$

Planck's constant =
$$6.63 \times 10^{-34} kg m^2 s^{-1}$$

By using
$$\Delta x \times \Delta p = \frac{h}{4\pi}$$
; $\Delta x \times \Delta v \times m = \frac{h}{4\pi}$

where : Δx = uncertainity in position

 Δv = uncertainity in velocity

$$\Delta x \times \Delta v = \frac{h}{4\pi \times m}$$

$$= \frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31}} = 5.8 \times 10^{-5} \, m^2 \, s^{-1} \, .$$

Quantum number, Electronic configuration and Shape of orbitals

- 3. (b) The shape of an orbital is given by azimuthal quantum number ${}^{\prime}\mathit{l'}$.
- **5.** (c) Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
- **6.** (c) $1s^2, 2s^2, 2p^6$ represents a noble gas electronic configuration.
- 7. (c) The electronic configuration of Ag in ground state is $[Kr]4d^{10}5s^1$.
- **8.** (a) *n*, *l* and *m* are related to size, shape and orientation respectively.
- **9.** (a) Electronic configuration of $Rb_{(37)}$ is

$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^1$$

So for the valence shell electron $(5s^1)$

$$n = 5, l = 0, m = 0, s = +\frac{1}{2}$$

- 10. (a) 3d subshell filled with 5 electrons (half-filled) is more stable than that filled with 4 electrons. 1,4s electrons jumps into 3d subshell for more sability.
- **11.** (c) In 2p orbital, 2 denotes principal quantum number (n) and p denotes azimuthal quantum number (l=1).
- **12.** (c) Electronic configuration of H^- is $1s^2$. It has 2 electrons in extra nuclear space.
- 13. (a) The electronic configuration must be $1s^2 2s^1$. Hence, the element is lithium (z = 3).
- 14. (a) Principal quantum no. tells about the size of the orbital.
- **15.** (d) An element has the electronic configuration $1s^2, 2s^2, 2p^6, 3s^2, 3p^2, (Si)$. It's valency electrons are four.
- 16. (c) The magnetic quantum number specifies orientation of orbitals.
- 17. (c) If $l = 2, m \neq -3$. =(-e to +e).
- **18.** (d) If n = 3 then l = 0, 1, 2 but not 3.
- **20.** (c) Atomic number of Cu is $29 = (Ar)4s^1 3d^{10}$.
- **21.** (c) The shape of 2p orbital is dumb-bell.
- **22.** (a) When the value of n=2, then l=1 and the value of m=-1,0,+1 *i.e.* 3 values.
- **23.** (c) $Cr_{24} = (Ar)3d^5 4s^1$ electronic configuration because half filled orbital are more stable than other orbitals.
- **24.** (d) *Kr* has zero valency because it contains 8 electrons in outermost shell.
- **25.** (c) 2 electron in the valence shell of calcium $Ca_{20} = (2, 8, 8, 2)$.
- **27.** (b) Value of l = 1 means the orbital is p (dumb-bell shape).
- **28.** (d) Cr has $[Ar]4s^13d^5$ electronic configuration because half filled orbital are more stable than other orbitals.
- **31.** (d) The two electrons will have opposite spins.
- 33. (c) If m = -3, then l = 3, for this value n must be 4.
- **34.** (d) No. of electrons = $2n^2$ hence no. of orbital = $\frac{2n^2}{2} = n^2$.
- **35.** (d) No. of electrons = $2n^2$ hence no. of orbital = $\frac{2n^2}{2} = n^2$.
- **36.** (c) If n = 3 then l = 0 to n 1 & m = -l to +l
- **37.** (b) $Na_{11} = 2, 8, 1 = 1s^2, 2s^2 2p^6, 3s^1$ n = 3, l = 0, m = 0, s = +1/2
- 38. (b) Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
- 39. (d) As a result of attraction, some energy is released. So at infinite distance from the nucleus energy of any electron will be maximum. For bringing electrons from ∞ to the orbital of any atom some work has to be done be electrons hence it bill loose its energy for doing that work.
- 40. (c) This space is called nodal space where there is no possibility of oressene of electrons.
- **41.** (d) For s orbital l = 0 m = 0.
- **42.** (c) For M^{th} shell, n=3; so maximum no. of electrons in M^{th} shell $=2n^2=2\times 3^2=18$.

- **43.** (c) m = -l to +l including zero.
- **44.** (a) Number of radial nodes = (n l 1)For 3s: n = 3, l = 0

(Number of radial node = 2)

For 2p: n = 2, l = 1

(Number of radial node = 0)

- **45.** (a) It consists only *s* orbital which is circular.
- **46.** (a) Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
- **47.** (b) If value of *l* is 2 then m = -2, -1, 0, +1, +2. m = -l to +l including zero.

(5 values of magnetic quantum number)

- **48.** (c) *s, p, d* orbitals present in *Fe* $Fe_{26} = 1s^2, 2s^2 \ 2p^6, 3s^2 \ 3p^6, 4s^2 \ 3d^6$
- **50.** (b) According to Aufbau rule.
- 51. (c) 3d subshell filled with 5 electrons (half-filled) is more stable than that filled with 4 electrons. 1,4s electrons jumps into 3d subshell for more sability.
- **52.** (b) $K_{19} = 1s^2, 2s^2 2p^6, 3s^2 3p^6, 4s^1$

for $4s^1$ electrons.

$$n = 4, l = 0, m = 0$$
 and $s = +\frac{1}{2}$.

- **54.** (b) 3d subshell filled with 5 electrons (half-filled) is more stable than that filled with 4 electrons. 1,4s electrons jumps into 3d subshell for more sability.
- **55.** (c) It has 3 orbitals p_x, p_y, p_z .
- **57.** (b) If l=2 then it must be d orbital which can have 10 electrons.
- **59.** (c) for *d* orbital l = 2.
- **60.** (c) m = -l to +l including zero.
- **61.** (d) When n=3 shell, the orbitals are $n^2=3^2=9$. No. of electrons $=2n^2$

Hence no. of orbital $=\frac{2n^2}{2}=n^2$.

62. (d) Configuration of $Ne = 1s^2 2s^2 2p^6$

$$F^{-} = 1s^{2} 2s^{2} 2p^{6}$$

$$Na^+ = 1s^2 2s^2 2p^6$$

$$Mg^{++} = 1s^2 2s^2 2p^6$$

$$Cl^- = 1s^2 2s^2 2p^6 3s^2 3p^6$$
.

- **63.** (d) $Unh_{106} = [Rn]5f^{14}, 6d^5, 7s^1$
- **64.** (c) K^+ and Ca^{++} have the same electronic configuration $(1s^2, 2s^2 2p^6, 3s^2 3p^6)$
- **65.** (b) For *s*-orbital, l = 0.
- **66.** (d) $3s^1$ is valency electrons of Na for this $n=3, l=0, m=0, s=\frac{+1}{2}$

- **67.** (c) $_7N = 1s^2, 2s^22p_x^1, 2p_y^1, 2p_z^1$. Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
- **68.** (d) (4) and (5) belong to d -orbital which are of same energy.
- **69.** (c) Atomic no. 17 is of chlorine.
- **70.** (b) The s-orbital has spherical shape due to its non-directional nature.
- 71. (a) According to the Aufbau's principle the new electron will enter in those orbital which have least energy. So here 4 p -orbital has least energy then the others.
- **72.** (c) According to Aufbau's principle.
- 73. (c) $1s^2 2s^2 2p^6, 3s^2 3p^6, 4s^2 3d^6 = 2, 8, 14, 2$.
- **74.** (c) Ground state of $Cu^{29} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ $Cu^{2+} = 1s^2 .2s^2 2p^6 .3s^2 3p^6 3d^9$.
- **76.** (c) No. of electrons in 3^{nd} shell = $2n^2 = 2(3)^2 = 18$
- **77.** (c) $F_9 = 1s^2 2s^2 2p^5$
- **78.** (c) When l=3 then $m=-3,-2,-1,0,+1,+2,+3 \ . \ m=-l \ \ \, \text{to} \ \ \, +l \ \, \text{including}$ zero.
- **80.** (d) m = -1 is not possible for s orbital (l = 0).
- **84.** (a) Both 2p and 3p-orbitals have dumb-bell shape.
- **85.** (b) 3d subshell filled with 5 electrons (half-filled) is more stable than that filled with 4 electrons. 1,4s electrons jumps into 3d subshell for more sability.
- **86.** (c) The shape of 2p orbital is dumb-bell.
- **87.** (a) $_{25}Mn = [Ar]3d^5 4s^2 = Mn^{2+} = [Ar]3d^5 4s^0$
- **89.** (c) For *p*-orbital, l = 1 means dumb-bell shape.
- 91. (d) l=3 means f subshell maximum number of e in f subshell = 14.
- 93. (b) As per Aufbau principle.
- **94.** (b) l=0 is s, l=1 is p and l=2 is d and so on hence s p d may be used in state of no..
- **95.** (d) For 4d, n = 4, l = 2, m = -2, -1, 0, +1, +2, $s = +\frac{1}{2}$.
- **96.** (d) m cannot be greater than l(=0,1).
- **97.** (a) For n = 1, l = 0.
- **99.** (d) $Na_{11} = 1s^2 2s^2 p^6 3s^2$

$$n = 3, l = 0, m = 0$$
 and $s = +\frac{1}{2}$.

- **102.** (d) According to Aufbau's rule.
- 105. (d) $2p_x, 2p_y, 2p_z$ sets of orbital is degenerate.
- **106.** (a) Mg_{12} have $1s^2 2s^2 2p^6 3s^2$ electronic configuration

$$n = 3$$
, $l = 0$, $m = 0$, $s = -\frac{1}{2}$.

- 107. (c) The principle quantum number n=3. Then azimuthal quantum number l=3 and number of orbitals $=n^2=3^2=9$. 3 and 9
- 108. (d) $_{29}Cu = [Ar]3d^{10}4s^1, Cu^{2+} = [Ar]3d^9.4s^0.$ Ground state of $Cu^{29} = 1s^22s^22p^63s^23p^63d^{10}4s^1$ $Cu^{2+} = 1s^2.2s^22p^6.3s^23p^63d^9.$
- 110. (d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$ it shows electronic configuration of Iron.
- III. (d) Orbitals are 4s, 3s, 3p and 3d. Out of these 3d has highest energy.
- 113. (c) For the n=2 energy level orbitals of all kinds are possible $2^n, 2^2=4$.
- **114.** (b) n=2 than no. of orbitals $=n^2$, $2^2=4$
- **118.** (b) For both A & B electrons s = -1/2 & +1/2 respectively, n = 3, l = 0, m = 0
- 119. (a) According to Aufbau's rule.
- **120.** (a) Possible number of subshells would be (6s, 5p, 4d).
- **121.** (d) For f orbital l = 3.
- **123.** (b) 4*d*-orbital have highest energy in given data.
- **125.** (d) If m = -3, l = 3 and n = 4.
- **127.** (b) $N_7^{14} = 1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$.
- **128.** (c) m can't be greater than l.
- 130. (b) n=1 and m=1 not possible for s-orbitals.
- 131. (a) $Fe_{26} = [Ar]3d^6 4s^2$ $Fe^{3+} = [Ar]3d^5 4s^0.$
- 132. (c) Maximum number of electron $= 2n^2 \text{ (where } n=4) = 2 \times 4^2 = 32.$
- 133. (d) When 2p orbital is completely filled then electron enter in the 3s. The capacity of 2p orbital containing e^- is 6. So $1s^2, 2s^2 2p^2 3s^1$ is a wrong electronic configuration the write is $1s^2 2s^2 2p^3$.
- 134. (b) This electronic configuration is Cr (chromium element) in the ground state $=1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$
- 137. (c) No. of electron are same (18) in $\operatorname{\it Cl}^-$ and $\operatorname{\it Ar}$.
- **138.** (c) For s-subshell l = 0 then should be m = 0.
- 139. (c) 19° electron of chromium is $4s^{-1}$ $n = 4, l = 0, m = 0, s = +\frac{1}{2}$
- **140.** (c) The value of m is -1 to 1 including zero so for l = 3, m would be -3, -2, -1, 0, +1, +2, +3.
- **141.** (c) l = 1 is for p orbital.
- **142.** (d) Magnetic quantum number of sodium $(3s^1)$ final electron is m = 0.
- 143. (c) Generally azimuthal quantum number defines angular momentum.

- **146.** (d) m = (2l+1) for d orbital l = 2 $m = (2 \times 2 + 1) = 5$.
- 147. (a) The atomic number of chlorine is 17 its configuration is $1s^2 2s^2 2p^6 3s^2 3p^5$
- 148. (c) n l m_1 m_2 3 2 1 0 This set (c) is not possible because spin quantum number values $=\pm\frac{1}{2}$.
- **149.** (b) The ground state of neon is $1s^2 2s^2 2p^6$ on excitation an electron from 2p jumps to 3s orbital. The excited neon configuration is $1s^2 2s^2 2p^5 3s^1$.
- **153.** (a) It is the ground state configuration of chromium.
- **155.** (b) $n = 4 \rightarrow 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2, 4p^6, 4d^{10}, 4f^{14}$ So l = (n-1) = 4 - 1 = 3 which is forbit contain 7 orbital.
- **156.** (d) 2p have contain maximum 6 electron out of which there are 3 are of + 1/2 spin and 3 are of 1/2 spin

$$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \qquad \uparrow \qquad \downarrow \\ _{+1/2} \qquad _{-1/2}$$

- **157.** (a) For 4 f orbital electron, n=4 $l=3 \ \ (\text{Because 0, 1, 2, 3})$ s, p, d, f m=+3,+2,+1,0,-1,-2,-3
- **158.** (b) $_{24}Cr \rightarrow 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1$

(We know that for p the value of l = 1 and for d, l = 2)

For l = 1 total number of electron = 12

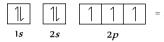
For l = 2 total number of electron = 5.

159. (c) Atomic number of potassium is 19 and hence electronic configuration will be $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^1$

Hence for $4s^1$ electron value of Quantum number are

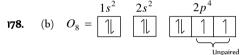
Principal quantum number n = 4

Azimuthal quantum number l=0


Magnetic quantum number m = 0

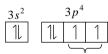
Spin quantum number s = +1/2


- **160.** (d) According to Hund's rule electron first fill in unpaired form in vacant orbital then fill in paired form to stabilized the molecule by which $1s^2, 2s^2, 2p_x^2$ is not possible. According to Hund's rule. Because $2p_x, p_y, p_z$ have the same energy level so electron first fill in unpaired form not in paired form so it should be $1s^2, 2s^2, 2p_x^1, 2p_y^1$.
- **161.** (c) It is governed by Aufbau principle.
- **162.** (d) The electronic configuration of atomic number $24 = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1$
- 163. (b) The maximum number of electron in any orbital is 2.

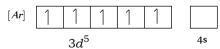


- According to pauli principle 2 electron does not have the same 164. value of all four quantum number. They have maximum same
- (a) Number of orbitals $= n^2 = 4^2 = 16$. 165.
- We know from the Aufbau principle, that 2p orbital will be 166. filled before 3s orbital. Therefore, the electronic configuration $1s^2, 2s^2, 2p^2, 3s^1$ is not possible.
- (d) Each orbital may have two electrons with opposite spin. 167.
- Maximum no. of electrons in a subshell = 2(2l+1) for f168. subshell, I = 3 so 14 electrons accommodated in f-subshell.
- Each orbital has atleast two electron. 169.
- Nucleus of 20 protons atom having 20 electrons. 170.
- For m = 0, electron must be in *s*-orbital. 174.
- In this type of electronic configuration the number of unpaired 176. electrons are 3.

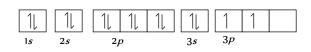
(a) Atomic number of Cu is 29 so number of unpaired electrons is 177.



 $Be_4 = 1s^2, 2s^2 =$ (Ground state) 181.


> Number of unpaired electrons in the ground state of Beryllium atom is zero.

(b) Two unpaired electrons are present in 182.


(c) $O_2 = 1s^2 2s^2 2p^6 3s^2 3p^4$ 183.

- (c) $Cr_{24} = (Ar)3d^5 4s^1$ but $Cr_{24}^{3+} = (Ar)3d^3 4s^0$ 184
- (a) $Zn_{30} = [Ar] 3d^{10} 4s^2$ 185. $Zn^{++} = [Ar]3d^{10} 4s^0$
- Mn^{+2} ion will have five (maximum) unpaired electrons 186

- Fe^{3+} ion will have five (maximum) unpaired electrons. 187.
- Due to full filled d-orbital Cl^- has spherical symmetry. 190.
- Atomic number 14 leaving 2 unpaired electron 191. $_{14}Si = 1s^2 2s^2 2p^6 3s^2 3p^2$

- (a) Shell = K, L, $M = 1s^2 2s^2 2p^6 3s^2 3p^4$ 192 Hence the number of s electron is 6 in that element.
- (d) $C_6 = 1s^2, 2s^2 2p^2$ (Ground state) 193. $=1s^2 2s^1 2P_x^1 2P_y^1 2P_z^1$ (Excited state)

In excited state no. of unpaired electron is 4.

- (b) Max. no. of electrons in N-shell (n = 4)194. $=2n^2=2\times 4^2=32$.
- (d) $_{26}Fe = [Ar]3d^6, 4s^2$ 195. $Fe^{2+} = [Ar]3d^6, 4s^0$

Number of d-electrons = 6

$$_{17}Cl = [Ne]3s^2, 3p^5$$

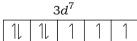
 $Cl^- = [Ne]3s^2, 3p^6$

Number of p-electrons = 6.

- Electrons in the atom = 18 + 4 + 3 = 25 *i.e.* Z = 25. 196.
- The atomic number of bromine is 35 and the electronic 197. configuration of Br is $Br_{35} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2, 4p^5$

total electron present in p-orbitals of Br is –

$$2p^6 + 3p^6 + 4p^5 = 17.$$


- (d) Fe^{2+} has $1s^2, 2s^22p^6, 3s^23p^63d^6$ configuration with 4 198. unpaired electron.
- $Fe^{2+}[Ar]3d^64s^0$ (b) 199.

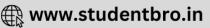
 Fe^{2+} consist of maximum 4 unpaired electrons.

 Fe^{3+} (z = 26) (a) 201. $Fe^{3+} = [Ar]3d^5 4s^0$

Total no. of unpaired electron=5

202. (b) $Co_{27} = [Ar] 3d^7 4s^2$

3 unpaired electron are present in cobalt metal.


203. According to Hund's rule, the pairing of electrons will not occur in any orbital of a subshell unit and unless, all the available of it have one electron each.

Electronic configuration of

$$_{7}N^{14} = 1 s^{2}, 2s^{2}, 2p_{x}^{1} 2p_{y}^{1} 2p_{z}^{1}$$

Hence it has 3 unpaired electron in 2p-orbital.

2s orbital have minimum energy and generally electron filling 204. increases order of energy according to the Aufbau's principle.

- **205.** (d) According to Pauli's exclusion principle no two electrons in the same atom can have all the set of four quantum numbers identical
- **206.** (b) The second principal shell contains four orbitals viz $2s, 2p_x, 2p_y$ and $2p_z$.
- 207. (b) Follow Hund's multiplicity rules.
- **208.** (c) According to the Aufbau's principle, electron will be first enters in those orbital which have least energy. So decreasing order of energy is 5p > 4d > 5s.
- **210.** (b) No two electrons in an atom can have identical set of all the four quantum numbers.
- **212.** (a) In particular shell, the energy of atomic orbital increases with the value of l.
- **214.** (c) Aufbau principle explains the sequence of filling of orbitals in increasing order of energy.
- **215.** (a) According to Aufbau principle electron are filling increasing order of energy. Therefore the electronic configuration $1s^2 2s^2 2p^6$ obeys Aufbau principle.
- **216.** (d) Electronic configuration of the Cr_{24} is $[Ar]4s^13d^5$ or

- **217.** (b) According to the Aufbau principle electron filling minimum to higher energy level.
- **219.** (b) According to Aufbau principle electron are filled in various atomic orbital in the increasing order of energy 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d < 6p < 7s.
- 220. (d) According to Aufbau's rule.
- **222.** (b) We know that for *d*-electron l = 2.

$$\mu = \sqrt{l(l+1)} \frac{h}{2\pi}; \ \mu = \sqrt{2(2+1)} \frac{h}{2\pi}$$
$$\mu = \sqrt{2(2+1)} \frac{h}{2\pi}; \ \mu = \sqrt{6} \frac{h}{2\pi}.$$

- **223.** (a) Number of nodal centre for 2s orbitals (n-1) = 2-1 = 1.
- **224.** (d) Since s-orbital have l=0 Angular momentum = $\sqrt{l(l+1)} \times \frac{h}{2\pi} = 0 \times \frac{h}{2\pi} = 0$.
- **225.** (d) Azimuthal quantum number (h) = 3 shows the presence of f orbit, which contain seven orbitals and each orbital have 2 electrons. Hence $7 \times 2 = 14$ electrons.
- 227. (b) According to Aufbau principle.
- **228.** (a) Atomic number of deuterium = 1; ${}_{1}D^{2} \rightarrow 1s^{1}$

Critical Thinking Questions

- 1. (a) F^- have the same number of electrons with the neon atom.
- **2.** (d) No change by doubling mass of electrons however by reducing mass of neutron to half total atomic mass becomes 6+3 instead of 6+6. Thus reduced by 25%.
- **3.** (d) $\frac{e}{m}$ for (i) neutron $=\frac{0}{1}=0$

(ii)
$$\alpha$$
 – particle = $\frac{2}{4}$ = 0.5

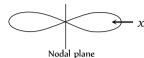
(iii) Proton
$$=\frac{1}{1}=1$$

(iv) electron $=\frac{1}{1/1837}=1837$.

- **4.** (a) Metal is $_{56}M^{2+}(2,8,14)$ than n=A-Z =56-26=30.
- 5. (d) $E = hv = h\frac{c}{\lambda}$ i.e. $E \propto \frac{1}{\lambda}$ $\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} = \frac{4000}{2000} = 2.$
- **6.** (c) Rutherford discovered nucleus.
- 7. (b) According to Bohr's model $\Delta E = E_1 E_3$ $= 2.179 \times 10^{-11} \frac{2.179 \times 10^{11}}{9}$ $= \frac{8}{9} \times 2.179 \times 10^{-11} = 1.91 \times 10^{-11} = 0.191 \times 10^{-10} erg$

Since electron is going from n = 1 to n = 3 hence energy is absorbed.

- 8. (d) Radius of nucleus = $1.25 \times 10^{-13} \times A^{1/3} cm$ = $1.25 \times 10^{-13} \times 64^{1/3} = 5 \times 10^{-13} cm$ Radius of atom = $1 \text{Å} = 10^{-8} cm$. $\frac{\text{Volume of nucleus}}{\text{Volume of atom}} = \frac{(4/3)\pi (5 \times 10^{-13})^3}{(4/3)\pi (10^{-8})^3}$ = 1.25×10^{-13} .
- 9. (a) Values of energy in the excited state $= -\frac{13.6}{n^2} eV$ $= \frac{-13.6}{4} = -3.4 eV$ in which n = 2, 3, 4 etc.
- 10. (c) $E_{1\ He^+} = E_{1\ H} \times z^2$ $-871.6 \times 10^{-20} = E_{1H} \times 4$ $E_{1\ H} = -217.9 \times 10^{-20} J$
- 11. (a) 42g of N_3^- ions have $16\,N_A$ valence electrons 4.2g of N_3^- ion have $=\frac{16\,N_A}{42}\times4.2=1.6\,N_A$.
- 12. (d) I^{St} excited state means n = 2 $r = r_0 \times 2^2 = 0.53 \times 4 = 2.12 \text{ Å}$
- 13. (d) Frequency $v = 12 \times 10^{14} \, s^{-1}$ and velocity of light $c = 3 \times 10^{10} \, cm \, s^{-1}$. We know that the wave number $\frac{1}{v} = \frac{v}{c} = \frac{12 \times 10^{14}}{3 \times 10^{10}} = 4 \times 10^4 \, cm^{-1}$
- **14.** (c) The last line in any series is called series limit. Series limit for Balmer series is 3646 Å.
- **15.** (b) $E = \frac{-13.6}{n^2} = \frac{-13.6}{4} = -3.4 \ eV$



We know that energy required for excitation $\Delta E = E_2 - E_1$ $=-3.4-(-13.6)=10.2 \, eV$

Therefore energy required for excitation of electron per atom $= \frac{10.2}{6.02 \times 10^{23}} = 1.69 \times 10^{-23} J$

(a) The number of nodal plane are present in a p_x is one or no. 17. of nodal place = 1

for p_x orbital l=1

- 18. (b) In Balmer series of hydrogen atomic spectrum which electronic transition causes third line $O \rightarrow L$, $n_2 = 5 \rightarrow n_1 = 2$
- (b) $v = \frac{1}{\lambda} = R_H \left| \frac{1}{n_1^2} \frac{1}{n_2^2} \right|$ 20. $=\frac{1}{\lambda}=R_H\left[\frac{1}{3^2}-\frac{1}{n_2^2}\right]=n_2=3$ for Paschen series.
- (a) $E \propto \left[\frac{1}{n_2^2} \frac{1}{n_1^2} \right]$ 21.
- (d) $\lambda = \frac{c}{v} = \frac{3 \times 10^8}{8 \times 10^{15}} = 3.75 \times 10^{-8}$ 23. $= 3.75 \times 10^{-8} \times 10^{9} nm = 4 \times 10^{1} nm$

Assertion & Reason

The assertion is false but the reason is true exact position and exact momentum of an electron can never be determined as according to Hesenberg's uncertainity principle even with the help of electron microscope because when e^- beam of electron microscope strikes the target e^- of atom, the impact causes the change in velocity of e^- thus attempt to locate the e^- changes ultimately, the momentum & position of e^- .

 $\Delta x.\Delta p \ge \frac{h}{4\pi} \approx 0.57 \, ergs \sec/gm.$

- 2. (d) Both assertion and reason are false. $2p_x$ and $2p_y$ orbitals are degenerate orbitals, i.e., they are of equal energy and hence no possibility of transition of electron.
- We know that principal quantum number represent the main 3 energy level or energy shell. Since each energy level is associated with a definite amount of energy, this quantum number determines to a large extent te energy of an electron. It also determines the average distance of an electron around the nucleus. Therefore both Assertion and Reason are true and the Reason is a correct explanation of the Assertion.
- It is observed that a nucleus which is made up of even number of nucleons (No. of $\,n\,$ & $\,p\,$) is more stable than nuclie which consist of odd number of nucleons. If number of neutron or proton is equal to some numbers i.e., 2,8, 20, 50, 82 or 126 (which are called magic numbers), then these passes extra stability.
- The assertion that the isobars are the atoms of different 5 elements having same mass number but different atomic number, is correct but reason is false because atomic mass is sum of number of neutron and protons which should be same for isobars.

- (d) We know from the Pauli exclusion principle, that two electrons in the same atom can not have same value of all four quantum numbers. This means each electron in an atom has only one set of values for n,l,m and s. Therefore both the Assertion and Reason are false.
- We know that the line in Balmer series of hydrogen spectrum the 7. highest wavelenght or lowest energy is between $n_1 = 2$ and $n_2 = 3$. And for Balmer series of hydrogen spectrum, the value of $n_1=2\;\;{\rm and}\;\;n_2=3,4,5$. Therefore the Assertion is false but the
- 8. We know that Absorption spectrum is produced when white light is passed through a substance and transmitted light is analysed by a spectrograph. The dark spaces corresponds to the light radiation absorbed by the substance. And emission spectrum is produced by analysing the radiant energy emitted by an excited substance by a spectrograph. Thus discontinuous spectra consisting of a series of sharp lines and separated by dark bands are obtained. Therefore both the Assertion and Reason are false.
- We know that a resonance hybrid or the actual molecule is 9. always more stable than any of its canonical structures which is also called hypothetical or imaginary structures. This stability is due to delocalization of electrons and is measured in terms of resonance energy or delocalization energy, it is defined as the difference in internal energy of the resonance hybrid and the most stable canonical structure. Therefore both the Assertion and Reason are true and the Reason is a correct explantion of the Assertion.
- 10. We know that cathode rays cast shadows of solid objects placed in their path. During experiment performed on these rays, fluorescene (flash of light) is observed in the region, outside the shadow. This shows that cathode rays travel in straight lines. We also known that cathode rays penetrate through a thin sheet of metals but are stopped by thick sheets. Therefore both Assertion and Reason are false.
- We know that electrons are revolving around the nucleus at high speed in circular paths. The centrifugal force (which arises due to rotation of electrons) acting outwards, balances the electrostatic force of attraction (which arises due to attraction between electrons and nucleus). This prevent the electron from falling into the nucleus. We also know that Rutherford's model of atom is comparable to the "solar system". The nucleeus represent the sun whereas revolving electrons represent the planets revolving around the sun. Thus revolving electron are also called planetary electrons. Therefore both Assertion and Reason are true but Reason is not a correct explanation of Assertion.
- Assertion is true but Reason is false. Threshold frequency is a 12. minimum frequency required for the emission of electrons from the metal surface.
- Both assertion and reason are true and reason is the correct 13.

Radius, $r = \frac{n^2h^2}{4\pi e^2mZ} = \frac{n^2}{Z} \times 0.529 \text{ Å. } r_n$ also indicating a greater separation between the orbit and the

- Both assertion and Reason are false. Only s -orbital is 14. spherically symmertrical. Shape of different d orbitals is as
- Assertion is true but reason is false. Spin angular momentum 15. of the electron, a vector quantity, can have two orientations (represented by + and - sign) relative to a chosen axis. These two orientation are distinguished by the spin quantum number

 m_s equals to $+\frac{1}{2}$ or $-\frac{1}{2}$. These are called the two spin

- states of the electron and are normaly represented by the two arrows \uparrow (spin up) and \downarrow (spin down) respectively.
- (d) Both assertion and reason are false. Total number of orbitals 16. associated with Principal quantum number n = 3 is 9. One 3s orbital + three 3p orbital + five 3d orbitals. \therefore Therefore there are a total number of nine orbitals. Number of orbitals in a shell equals to n^2 .
- (c) Assertion is true but reason is false. The order 17. 1s < 2s = 2p < 3s = 3p = 3d < ... is true for the energy of an electron in a hydrogen atom and is solely determined by Principal quantum number. For multielectron system energy also depends on azimuthal quantum number. The stability of an electron in a multi electron atom is the net result of the attraction between the electron and the uncleus and the repulsion between the electron and the rest of the electron present. Energies of different subshell (azimuthal quantum number) present within the same principal shell are found to be in order of s .
- Assertion is false but reason is true. Splitting of the spectral 18. lines in the presence of a magnetic field is known as Zeeman effect or in electric field it is known as stark effect. The splitting of spectral lines is due to different orientations which the orbitals can have in the presence of magnetic field.
- Both assertion and reason are true and reason is the correct 19. explanation of assertion.
- (e) Assertion is false but reason is true. Atomic orbital is 20. designated by n,l and m_l while state of an electron in an atom is specified by four quantum numbers n, l, m_l and m_s .
- (b) Both assertion and reason are true but reason is not the 21. correct explanation of assertion. The difference between the energies of adjacent energy levels decreases as we move away from the nucleus. Thus in $\,H\,$ atom

$$E_2 - E_1 > E_3 - E_2 > E_4 - E_3 \dots$$

- (d) Both assertion and reason are false. Cathode rays are stream of 22. electrons. They are generated through gases at low pressure and high voltage.
- Both assertion and reason are false. In case of isoelectronic, i.e., 23. ions, having the same number of electrons and different nuclear charge, the size decreases with increase in atomic number.

lon	At. No.	No. of electrons	lonic radii	
$Na^{\scriptscriptstyle +}$	11	10	0.95Å	
Mg^{2+}	12	10	0.65Å	
AB^+	13	10	0.50Å	

Structure of atom

FT Self Evaluation Test - 2

The correct set of quantum numbers for the unpaired electron of [IIT 1989; MP PET 2004] chlorine atom is

- 2
- (c) 3
- The orbital diagram in which the Aufbau's principle is violated is 2.

$$2p_x$$

$$2p_y$$

$$2p_z$$

$$\uparrow\downarrow$$

3.

 $\uparrow\downarrow$ The mass of neutron is nearly

[MNR 1988; UPSEAT 1999, 2000, 02]

(a)
$$10^{-23} kg$$

(b)
$$10^{-24} kg$$

(c)
$$10^{-26} kg$$

(d)
$$10^{-27} kg$$

Which electronic level would allow the hydrogen atom to absorb a photon but not to emit a photon

[IIT 1984; CPMT 1997]

- 3*s* (a)
- (b) 2p

- (d) 1s
- Which of the following is not correct for electron distribution in the ground state [AIIMS 1982]

3d

- Co(Ar)

- Ni(Ar)

- Cu(Ar)

- Zn(Ar)
- $\uparrow\downarrow$
- $\uparrow\downarrow$
- 6. If electron, hydrogen, helium and neon nuclei are all moving with the velocity of light, then the wavelengths associated with these particles are in the order [MP PET 1993]
 - (a) Electron > hydrogen > helium > neon
 - (b) Electron > helium > hydrogen > neon
 - (c) Electron < hydrogen < helium < neon
 - (d) Neon < hydrogen < helium < electron
- From the given sets of quantum numbers the one that is inconsistent 7. with the theory is [IIT Screening 1994]
 - (a) n = 3; l = 2; m = -3; s = +1/2

(b)
$$n = 4; l = 3; m = 3; s = +1/2$$

(c)
$$n = 2; l = 1; m = 0 l s = -1/2$$

(d)
$$n = 4; l = 3; m = 2; s = +1/2$$

The uncertainty in the position of an electron (mass = 8. 9.1×10^{-28} g) moving with a velocity of 3.0×10^4 cm s^{-1} accurate upto 0.001% will be

(Use
$$\frac{h}{4\pi}$$
 in the uncertainty expression, where

 $h = 6.626 \times 10^{-27} \, erg - s$

[CBSE PMT 1995]

- (a) 1.92*cm*
- (b) 7.68*cm*
- (c) 5.76cm
- (d) 3.84*cm*
- The orbital angular momentum of an electron in s orbital is

[IIT 1996; AIEEE 2003; MP PET 2004]

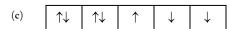
- (a) $+\frac{1}{2} \cdot \frac{h}{2\pi}$
- (b) Zero
- (d) $\sqrt{2} \cdot \frac{h}{2\pi}$
- Values of the four quantum numbers for the last electron in the atom are n = 4, l = 1, m = +1 and s = -1/2. Atomic number of the atom will be
 - (a) 22

(b) 32

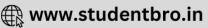
(c) 33

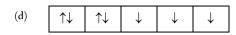
- (d) 36
- The atomic weight of an element is 39. The number of neutrons in 11. its nucleus is one more than the number of protons. The number of protons, neutrons and electrons respectively in its atom would be [MP PMT 1997
 - (a) 19, 20, 19
- (b) 19, 19, 20
- (c) 20, 19, 19
- (d) 20, 19, 20

 \uparrow


- The electrons identified by quantum numbers n and l (i) 12. n = 4, l = 1 (ii) n = 4, l = 0 (iii) n = 3, l = 2 (iv) n = 3, l = 1can be placed in order of increasing energy from the lowest to highest, as
 - (a) (iv) < (ii) < (iii) < (i)
 - $\left(b\right)\,\left(ii\right)<\left(iv\right)<\left(i\right)<\left(iii\right)$
 - (c) (i) < (iii) < (iv)
 - (d) (iii) < (i) < (iv) < (ii)

 $\uparrow\downarrow$


Ground state electronic configuration of nitrogen atom can be represented by [IIT 1999]


(a)	ightarrow	ightarrow	↑	↑	\leftarrow

 $\uparrow\downarrow$

(b)

14. Which of the following statements (s) is (are) correct

[IIT 1998]

- (a) The electronic configuration of Cr is $[Ar]3d^5 4s^1$ (Atomic no. of Cr = 24)
- (b) The magnetic quantum number may have a negative value
- (c) In silver atom, 23 electrons have a spin of one type and 24 of the opposite type (Atomic no. of Ag=47)
- (d) The oxidation state of nitrogen in HN_3 is -3
- **15.** The position of both an electron and a helium atom is known within 1.0nm and the momentum of the electron is known within $50\times10^{-26}\,kg\,ms^{-1}$. The minimum uncertainty in the measurement of the momentum of the helium atom is

[CBSE PMT 1998; AlIMS 2001]

- (a) $50kg \, ms^{-1}$
- (b) $60 \, kg \, ms^{-1}$
- (c) $80 \times 10^{-26} \, kg \, ms^{-1}$
- (d) $50 \times 10^{-26} \, kg \, ms^{-1}$
- **16.** Which of the following pair of orbitals posses two nodal planes
 - (a) $p_{xy}, d_{x^2-y^2}$
- (b) d_{xy}, d_{zx}
- (c) p_{xy}, d_{zx}
- (d) d_{z^2}, d_{z^2}
- 17. The number of atoms in 0.004 g of magnesium are

[AFMC 2000]

- (a) 4×10^{20}
- (b) 8×10^{20}

- (c) 10^{20}
- (d) 6.02×10^{20}
- 18. Which of the following have the same number of unpaired electrons in 'd orbitals [Roorkee 2000]
 - (a) *Cr*

(b) *Mn*

(c) Fe

- (d) *Co*
- 19. The quantum numbers + 1/2 and 1/2 for the electron spin represent [IIT Screening 2001]
 - (a) Rotation of the electron in clockwise and anticlockwise direction respectively
 - (b) Rotation of the electron in anticlockwise and clockwise direction respectively
 - (c) Magnetic moment of the electron pointing up and down respectively
 - (d) Two quantum mechanical spin states which have no classical analogue
- **20.** The de-Broglie wavelength of a tennis ball of mass 60 *g* moving with a velocity of 10 *metres* per second is approximately
 - (a) 10^{-33} metres
- (b) $10^{-31} metres$
- (c) 10^{-16} metres
- (d) 10^{-25} metres
- 21. Which of the following are isoelectronic and isostructural $NO_3^-, CO_3^{2-}, ClO_3^-, SO_3$ [IIT Screening 2003]
 - [RPMT 2000]
 (a) $NO_3^-, CO_3^2^-$
- (b) SO_3, NO_3^-
- (c) ClO_3^-, CO_3^{2-}
- (d) CO_3^{2-}, SO_3
- **22.** The total number of electrons present in all the *s*-orbitals, all the *p*-orbitals and all the *d*-orbitals of cesium ion are respectively
 - (a) 8, 26, 10
- (b) 10, 24, 20
- (c) 8, 22, 24
- (d) 12, 20, 22

Answers and Solutions


(SET -2)

1. (c) Electronic configuration of Cl is

So for the unpaired electron $(3p_z^1)$:

$$n = 3, l = 1, m = 1, S = +\frac{1}{2}$$

- **2.** (b) According to Aufbau principle the orbitals of lower energy (2*s*) should be fully filled before the filling of orbital of higher energy starts.
- **3.** (d) Mass of neutron = $1.675 \times 10^{-27} kg$.
- **4.** (d) 1*s*-orbital is of lowest energy. Absorption of photon can raise the electron in higher energy state but emission is not possible.
- 5. (c) The correct electronic configuration

$$Cu_{29} = [Ar], \quad 4s^{1} \qquad 3d^{10}$$

- **6.** (a) $\lambda \propto \frac{1}{m}, m_e < m_H < m_{He} < m_{Ne}$
- 7. (a) When $l = 2, m \neq -3$.
- **8.** (a) $\Delta p = m \times \Delta v$

$$\Delta p = 9.1 \times 10^{-28} \times 3.0 \times 10^4 \times \frac{0.001}{100}$$

$$\Delta P = 2.73 \times 10^{-24}$$

Hence
$$\Delta x = \frac{h}{\Delta p \times 4\pi} = \frac{6.626 \times 10^{-27}}{2.73 \times 10^{-28} \times 4 \times 3.14}$$

$$\Delta x = 1.92 \, cm$$
.

9. (b) For 2s orbital, I = 0; azimuthal quantum number is not show angular momentum for the 2s orbitals.

Angular momentum
$$=\sqrt{l(l+1)}\frac{h}{2\pi}=0$$
 .

- 10. (d) Atomic number is 36 and element is Kr.
- 11. (a) K_{19}^{39} , P = 19, E = 19, N = 20
- 12. (a) (i) 4p (ii) 4s (iii) 3d (iv) 3p order of increasing energy is 3p < 4s < 3d < 4p.
- 13. (a,d) According to Hund's principle.

14. (a,b,c) The oxidation state of nitrogen in HN_3 is $-\frac{1}{3}$.

$$HN_3$$
: $1+3x=0 \implies 3x=-1$ or $x=\frac{-1}{3}$

- 15. (d) The product of uncertainties in the position and the momentum of a sub atomic particle $=h/4\pi$. Since Δx is same for electron and helium so Δp must be same for both the particle *i.e.* $50 \times 10^{-26} \, kg \, ms^{-1}$ (given).
- **16.** (b) d_{xy} and d_{zx} has two modal planes.
- 17. (c) No. of atoms in magnesium = $\frac{0.004}{24} \times 6.023 \times 10^{23} = 10^{-23}$
- **18.** (a,b,c) Cr, Mn and Fe^{3+} have 5 unpaired electron in d-orbitals

$$_{24}Cr = 3d^5 \, 4s^1 = 5$$

$$_{25}Mn = 3d^5 4s^2 = 5$$

$$_{26}Fe^{3+} = 3d^54s^0 = 5$$

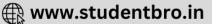
19. (a,d) Both statement are correct.

20. (a)
$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{60 \times 10^{-3} \times 10} = 10^{-33} m$$

- **21.** (a) NO_3^- and CO_3^{2-} consist of same electron and show same isostructural.
- **22.** (b) $(Cs_{35})=1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2$

$$4p^6, 4d^{10}, 5s^2, 5p^6, 6s^1$$

$$Cs^+ = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2,$$


$$4p^6, 4d^{10}, 5s^2, 5p^6$$

Total no. of e^- in s-orbitals = 10

Total no. of e^- in p-ortbitals = 24

Total no. of e^- in *d*-ortbitals = 20.

